Combustion physics

This is a graduate-level text on the fundamentals of chemically reacting flows, intended for students and researchers in a variety of applied sciences and engineering. It is especially relevant to work in heat and power generation, burners and internal combustion engines, energy conservation, aero-p...

Descripción completa

Detalles Bibliográficos
Autor principal: Law, Chung K., 1947- (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge ; New York : Cambridge University Press 2006.
Colección:EBSCO Academic eBook Collection Complete.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b38405477*spi
Tabla de Contenidos:
  • Cover
  • Title
  • Copyright
  • Contents
  • Preface
  • Contents
  • Dedication
  • Preface
  • Introduction
  • 0.1. MAJOR AREAS OF COMBUSTION APPLICATION
  • 0.2. SCIENTIFIC DISCIPLINES COMPRISING COMBUSTION
  • 0.3. CLASSIFICATIONS OF FUNDAMENTAL COMBUSTION PHENOMENA
  • 0.4. ORGANIZATION OF THE TEXT
  • 0.5. LITERATURE SOURCES
  • Introductory Texts
  • Intermediate Texts
  • Advanced Texts
  • Specialized Texts and Monographs
  • Journals
  • 1 Chemical Thermodynamics
  • 1.1. PRACTICAL REACTANTS AND STOICHIOMETRY
  • 1.1.1. Practical Reactants
  • 1.1.2. Stoichiometry
  • 1.2. CHEMICAL EQUILIBRIUM
  • 1.2.1. First and Second Laws
  • 1.2.2. Thermodynamic Functions
  • 1.2.3. Criterion for Chemical Equilibrium
  • 1.2.4. Phase Equilibrium
  • 1.2.5. Equilibrium Constants
  • 1.2.6. Equilibrium Constants in the Presence of Condensed Phases
  • 1.2.7. Multiple Reactions
  • 1.2.8. Element Conservation
  • 1.2.9. Restricted Equilibrium
  • 1.3. EQUILIBRIUM COMPOSITION CALCULATIONS
  • 1.3.1. Equilibrium Composition of Hydrocarbon-Air Mixtures
  • 1.3.2. The Major-Minor Species Model
  • 1.3.3. Computer Solutions
  • 1.4. ENERGY CONSERVATION
  • 1.4.1. Heats of Formation, Reaction, and Combustion
  • 1.4.2. Estimation of Heat of Reaction from Bond Energies
  • 1.4.3. Determination of Heat of Reaction from Kp(T)
  • 1.4.4. Sensible Energies and Heat Capacities
  • 1.4.5. Energy Conservation in Adiabatic Chemical Systems
  • 1.4.6. Adiabatic Flame Temperature and Equilibrium Composition
  • 2 Chemical Kinetics
  • 2.1. PHENOMENOLOGICAL LAW OF REACTION RATES
  • 2.1.1. The Law of Mass Action
  • 2.1.2. Reversible Reactions
  • 2.1.3. Multistep Reactions
  • 2.1.4. Steady-State Approximation
  • 2.1.5. Partial Equilibrium Approximation
  • 2.1.6. Approximations by Global and Semiglobal Reactions
  • 2.1.7. Reaction Order and Molecularity
  • 2.2. THEORIES OF REACTION RATES: BASIC CONCEPTS
  • 2.2.1. The Arrhenius Law
  • 2.2.2. The Activation Energy
  • 2.2.3. Collision Theory of Reaction Rates
  • 2.2.4. Transition State Theory of Reaction Rates
  • 2.3. THEORIES OF REACTION RATES: UNIMOLECULAR REACTIONS
  • 2.3.1. Lindemann Theory
  • 2.3.2. Rice-Ramsperger-Kassel (RRK) Theory
  • 2.3.3. Representation of Unimolecular Reaction Rate Constants
  • 2.3.4. Chemically Activated Reactions
  • 2.4. CHAIN REACTION MECHANISMS
  • 2.4.1. Halogen SystemStraight-ChainReactions:TheHydrogen-
  • 2.4.2. Branched-Chain Reactions
  • 2.4.3. Flame Inhibitors
  • 2.5. EXPERIMENTAL AND COMPUTATIONAL TECHNIQUES
  • 3 Oxidation Mechanisms of Fuels
  • 3.1. PRACTICAL FUELS
  • 3.2. OXIDATION OF HYDROGEN AND CARBON MONOXIDE
  • 3.2.1. Explosion Limits of Hydrogen-Oxygen Mixtures
  • 3.2.2. Carbon Monoxide Oxidation
  • 3.2.3. Initiation Reactions in Flames
  • 3.3. OXIDATION OF METHANE
  • 3.3.1. General Considerations of Hydrocarbon Oxidation
  • 3.3.2. Methane Autoignition
  • 3.3.3. Methane Flames
  • 3.4. OXIDATION OF C2 HYDROCARBONS
  • 3.5. OXIDATION OF ALCOHOLS
  • 3.6. HIGH-TEMPERATURE OXIDATION OF HIGHER ALIPHATIC FUELS
  • 3.6.1. The [beta]-Scission Rule
  • 3.6.2. Oxidation Mechanisms
  • 3.7. OXIDATION OF AROMATICS
  • 3.8. HYDROCARBON OXIDATION AT LOW TO INTERMEDIATE TEMPERATURES
  • 3.9. CHEMISTRY OF POLLUTANT FORMATION
  • 3.9.1. Oxides of Nitrogen
  • 3.9.2. Soot Formation
  • 3.10.