Stochastic Models for Time Series

This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap ar...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: SpringerLink (-)
Otros Autores: Doukhan, Paul. autor (autor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer 2018.
Colección:Mathématiques et Applications, 80.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b38029595*spi
Tabla de Contenidos:
  • Part I Independence and Stationarity
  • 1 Probability and Independence
  • 2 Gaussian convergence and inequalities
  • 3 Estimation concepts
  • 4 Stationarity
  • Part II Models of time series
  • 5 Gaussian chaos
  • 6 Linear processes
  • 7 Non-linear processes
  • 8 Associated processes
  • Part III Dependence
  • 9 Dependence
  • 10 Long-range dependence
  • 11 Short-range dependence
  • 12 Moments and cumulants
  • Appendices
  • A Probability and distributions
  • B Convergence and processes
  • C R scripts used for the gures
  • Index- List of figures.