Porous media Theory, properties and applications Theory, properties and applications

Detalles Bibliográficos
Otros Autores: Wolfe, Doris (Materials scientist) (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hauppauge, New York : Nova Science Publishers Inc [2016]
Colección:EBSCO Academic eBook Collection Complete.
Materials Science and Technologies.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3734559x*spi
Tabla de Contenidos:
  • POROUS MEDIA: THEORY, PROPERTIES AND APPLICATIONS; POROUS MEDIA: THEORY, PROPERTIES AND APPLICATIONS; Library of Congress Cataloging-in-Publication Data; CONTENTS; PREFACE; Chapter 1: HYBRID MODELING AND ANALYSIS OF MULTICOMPONENT ADSORPTION WITH APPLICATIONS TO COALBED METHANE ; Abstract; 1. Introduction; Transport with Adsorption; Multiple Components; 2. Processes and Continuum Models; 2.1. ComprehensiveModel for Multiple Components; Definitions of Variables; Equation of State; Mass Conservation Equations; Gas velocity; Adsorption Relationships; 2.1.1.; 2.2. Sorption Isotherms.
  • 2.2.1. Single Component Isotherms2.2.2. Multiple Component Isotherms; 2.2.3. IASModel for Multicomponent Adsorption; 2.3. Model Summary and Illustration; 2.3.1. Simulation with EL; 3. Analysis of Transport with Adsorption and IAS; 3.1. Analysis and Numerical Models for Conservation Laws; Definition 3.1.; 3.2. Analysis and Numerics for Transport with Adsorption, I = 1; 3.2.1. Numerical Scheme for Transport with Adsorption; 3.3. Analysis for Multicomponent Transport with Adsorption,; Lemma 3.1.; 3.3.1. Numerics for the Adsorption System; 3.4. Analysis of the Extended Langmuir System.
  • 3.5. Analysis of IAS Adsorption SystemProposition 3.1.; Proof.; 3.6. Results: Simulations of Transport with IAS Isotherms; 4. Hybrid PorescaleModels of Adsorption; Porescale Geometry; 4.1. Single Component MFEQ AdsorptionModel; Hamiltonian for Adsorption; Realizations of n; Mean-Field Approximations; Solving for Equilibria; Literature on MFEQ for Adsorption; 4.2. Analysis of the MFEQ Adsorption Isotherms; Behavior of ˆ(P); 4.2.1. Finding Single Component Isotherms a0,MFEQ; 4.3. Results of MFEQ: Single Component Isotherms a0,MFEQ; 4.3.1. Computational Results.
  • 4.3.2. Multicomponent MFEQ IsothermsCase Studies; 5. Conclusion; Acknowledgments; References; About the Authors; Chapter 2: INFLUENCE OF TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY ON NON-DARCY FLOW AND HEAT TRANSFER IN A VERTICAL RECTANGULAR DUCT; Abstract; Nomenclature; 1. Introduction; 2. Mathematical Formulation; 3. Method of Solution; 4. Results and Discussion; Conclusion; References; About the Author; Chapter 3: EVAPORATION INFLUENCES ON WICKING IN THIN POROUS STRIPS; Abstract; 1. Introduction; 2. Theory; 2.1. The Richards Equation and Green-Ampt Theory; 2.2. Potential Flow Theory.
  • 2.3. Closure of the Boundary Conditions2.3.1. Inlet from the Liquid Reservoir; 2.3.2. The MovingWet Front; 2.3.3. Side Boundaries of the Medium; 3. Derivation of Analytical Model; 3.1. The Velocity Potential; 3.1.1. Capillary Potential; 3.1.2. Gravity Potential; 3.1.3. Normal Surface Evaporation Potential; 3.1.4. Side Boundary Evaporation Potential; 3.1.5. The Total Velocity Potential; 3.2. The Front Velocity Equation; 3.3. Solutions of the Front Velocity Equation for Simplified Cases; 3.3.1. Capillary Flow or the Lucas-Washburn Equation; 3.3.2. Capillary Flow Restrained by Gravity.