Design and Analysis of Learning Classifier Systems A Probabilistic Approach

This book provides a comprehensive introduction to the design and analysis of Learning Classifier Systems (LCS) from the perspective of machine learning. LCS are a family of methods for handling unsupervised learning, supervised learning and sequential decision tasks by decomposing larger problem sp...

Descripción completa

Detalles Bibliográficos
Autor principal: Drugowitsch, Jan (-)
Autor Corporativo: SpringerLink (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg 2008.
Colección:Studies in Computational Intelligence ; 139.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b33036639*spi
Tabla de Contenidos:
  • Background
  • A Learning Classifier Systems Model
  • A Probabilistic Model for LCS
  • Training the Classifiers
  • Mixing Independently Trained Classifiers
  • The Optimal Set of Classifiers
  • An Algorithmic Description
  • Towards Reinforcement Learning with LCS
  • Concluding Remarks.