Hyperbolic Conservation Laws and Related Analysis with Applications Edinburgh, September 2011

This book presents thirteen papers, representing the most significant advances and current trends in nonlinear hyperbolic conservation laws and related analysis with applications. Topics covered include a survey on multidimensional systems of conservation laws as well as novel results  on liquid cry...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: SpringerLink (-)
Otros Autores: Chen, Gui-Qiang G. (-), Holden, Helge, Karlsen, Kenneth H.
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg 2014.
Colección:Springer Proceedings in Mathematics & Statistics ; 49.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3292897x*spi
Tabla de Contenidos:
  • Preface by G.-Q. Chen, H. Holden, K. H. Karlsen
  • B. Andreianov: Semigroup Approach for Conservation Laws with Discontinuous Flux
  • F. Betancourt, R. Bürger, R. Ruiz-Baier, H.Torres, C. A. Vega: On Numerical Methods for Hyperbolic Conservation Laws and Related Equations Modeling Sedimentation of Solid-liquid suspensions
  • L. Caravenna: SBV Regularity Results for Solutions to 1D Conservation Laws
  • N. Chemetov, W. Neves: Generalized Buckley-Leverett System. - G.-Q. Chen, M. Slemrod, D. Wang: Entropy, Elasticity, and the Isometric Embedding Problem: M3̂\to\R6̂
  • G.-Q. Chen, W. Xiang: Existence and Stability of Global Solutions of Shock Diffraction Wedges for Potential Flow
  • G. M. Coclite, L. di Ruvo, K. H. Karlsen: Some Wellposedness results for the Ostrovsky-Hunter Equation
  • M. Ding, Ya. Li: An Overview for Piston Problems in Fluid Dynamics
  • D. Donatelli, P. Marcati: Quasineutral Limit for the Navier-Stokes-Fourier-Poisson System
  • H. Frid: Divergence-Measure Fields on Domains with Lipschitz Boundary
  • T. Karper, A. Mellet, K. Trivisa: On Strong Local Alignment in the Kinetic Cucker-Smale Model
  • D. Serre: Multi-Dimensional Systems of Conservation Laws. An Introductory Lecture
  • B. Stevens: The Nash-Moser Iteration Technique with Application to Characteristic Free-Boundary Problems.