Fourier Analysis and Nonlinear Partial Differential Equations
In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims a...
Autor principal: | |
---|---|
Autor Corporativo: | |
Otros Autores: | , |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg
2011.
|
Colección: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ;
343. Springer eBooks. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b32925633*spi |
Tabla de Contenidos:
- Preface
- 1. Basic analysis
- 2. Littlewood-Paley theory
- 3. Transport and transport-diffusion equations
- 4. Quasilinear symmetric systems
- 5. Incompressible Navier-Stokes system
- 6. Anisotropic viscosity
- 7. Euler system for perfect incompressible fluids
- 8. Strichartz estimates and applications to semilinear dispersive equations
- 9. Smoothing effect in quasilinear wave equations
- 10
- The compressible Navier-Stokes system
- References. - List of notations
- Index.