Fourier Analysis and Nonlinear Partial Differential Equations

In recent years, the Fourier analysis methods have expereinced a growing interest in the study of partial differential equations. In particular, those techniques based on the Littlewood-Paley decomposition have proved to be very efficient for the study of evolution equations. The present book aims a...

Descripción completa

Detalles Bibliográficos
Autor principal: Bahouri, Hajer (-)
Autor Corporativo: SpringerLink (-)
Otros Autores: Chemin, Jean-Yves, Danchin, Raphaël
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg 2011.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics ; 343.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b32925633*spi
Tabla de Contenidos:
  • Preface
  • 1. Basic analysis
  • 2. Littlewood-Paley theory
  • 3. Transport and transport-diffusion equations
  • 4. Quasilinear symmetric systems
  • 5. Incompressible Navier-Stokes system
  • 6. Anisotropic viscosity
  • 7. Euler system for perfect incompressible fluids
  • 8. Strichartz estimates and applications to semilinear dispersive equations
  • 9. Smoothing effect in quasilinear wave equations
  • 10
  • The compressible Navier-Stokes system
  • References. - List of notations
  • Index.