Normal Approximation by Stein’s Method

Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated de...

Descripción completa

Detalles Bibliográficos
Autor principal: Chen, Louis H.Y (-)
Autor Corporativo: SpringerLink (-)
Otros Autores: Goldstein, Larry, Shao, Qi-Man
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg 2011.
Colección:Probability and its Applications.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b32925347*spi
Tabla de Contenidos:
  • Preface
  • 1.Introduction
  • 2.Fundamentals of Stein's Method
  • 3.Berry-Esseen Bounds for Independent Random Variables
  • 4.L1̂ Bounds
  • 5.L1̂ by Bounded Couplings
  • 6 L1̂: Applications
  • 7.Non-uniform Bounds for Independent Random Variables
  • 8.Uniform and Non-uniform Bounds under Local Dependence
  • 9.Uniform and Non-Uniform Bounds for Non-linear Statistics
  • 10.Moderate Deviations
  • 11.Multivariate Normal Approximation
  • 12.Discretized normal approximation
  • 13.Non-normal Approximation
  • 14.Extensions
  • References
  • Author Index
  • Subject Index
  • Notation.