Numerical Methods for Nonlinear Partial Differential Equations
The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly...
Autor principal: | |
---|---|
Autor Corporativo: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing
2015.
|
Colección: | Springer Series in Computational Mathematics ;
47. Springer eBooks. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b32920623*spi |
Tabla de Contenidos:
- 1. Introduction
- Part I: Analytical and Numerical Foundations
- 2. Analytical Background
- 3. FEM for Linear Problems
- 4. Concepts for Discretized Problems
- Part II: Approximation of Classical Formulations
- 5. The Obstacle Problem
- 6. The Allen-Cahn Equation
- 7. Harmonic Maps
- 8. Bending Problems
- Part III: Methods for Extended Formulations
- 9. Nonconvexity and Microstructure
- 10. Free Discontinuities
- 11. Elastoplasticity
- Auxiliary Routines
- Frequently Used Notation
- Index.