Numerical Methods for Nonlinear Partial Differential Equations

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly...

Descripción completa

Detalles Bibliográficos
Autor principal: Bartels, Sören (-)
Autor Corporativo: SpringerLink (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cham : Springer International Publishing 2015.
Colección:Springer Series in Computational Mathematics ; 47.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b32920623*spi
Tabla de Contenidos:
  • 1. Introduction
  • Part I: Analytical and Numerical Foundations
  • 2. Analytical Background
  • 3. FEM for Linear Problems
  • 4. Concepts for Discretized Problems
  • Part II: Approximation of Classical Formulations
  • 5. The Obstacle Problem
  • 6. The Allen-Cahn Equation
  • 7. Harmonic Maps
  • 8. Bending Problems
  • Part III: Methods for Extended Formulations
  • 9. Nonconvexity and Microstructure
  • 10. Free Discontinuities
  • 11. Elastoplasticity
  • Auxiliary Routines
  • Frequently Used Notation
  • Index.