Geometric Integration Theory

This textbook introduces geometric measure theory through the notion of currents. Currents—continuous linear functionals on spaces of differential forms—are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions...

Descripción completa

Detalles Bibliográficos
Autor principal: Krantz, Steven (-)
Autor Corporativo: SpringerLink (-)
Otros Autores: Parks, Harold
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boston : Birkhäuser Boston 2008.
Colección:Cornerstones.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b32741042*spi
Tabla de Contenidos:
  • Basics
  • Carathéodory’s Construction and Lower-Dimensional Measures
  • Invariant Measures and the Construction of Haar Measure.
  • Covering Theorems and the Differentiation of Integrals
  • Analytical Tools: The Area Formula, the Coarea Formula, and Poincaré Inequalities.
  • The Calculus of Differential Forms and Stokes’s Theorem
  • to Currents
  • Currents and the Calculus of Variations
  • Regularity of Mass-Minimizing Currents.