Geometric Integration Theory
This textbook introduces geometric measure theory through the notion of currents. Currents—continuous linear functionals on spaces of differential forms—are a natural language in which to formulate various types of extremal problems arising in geometry, and can be used to study generalized versions...
Autor principal: | |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Boston :
Birkhäuser Boston
2008.
|
Colección: | Cornerstones.
Springer eBooks. |
Acceso en línea: | Conectar con la versión electrónica |
Ver en Universidad de Navarra: | https://innopac.unav.es/record=b32741042*spi |
Tabla de Contenidos:
- Basics
- Carathéodory’s Construction and Lower-Dimensional Measures
- Invariant Measures and the Construction of Haar Measure.
- Covering Theorems and the Differentiation of Integrals
- Analytical Tools: The Area Formula, the Coarea Formula, and Poincaré Inequalities.
- The Calculus of Differential Forms and Stokes’s Theorem
- to Currents
- Currents and the Calculus of Variations
- Regularity of Mass-Minimizing Currents.