Inference in Hidden Markov Models

Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statist...

Descripción completa

Detalles Bibliográficos
Autor principal: Cappé, Olivier (-)
Autor Corporativo: SpringerLink (-)
Otros Autores: Moulines, Eric, Rydén, Tobias
Formato: Libro electrónico
Idioma:Inglés
Publicado: New York, NY : Springer New York 2005.
Colección:Springer series in statistics.
Springer eBooks.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b32735832*spi
Tabla de Contenidos:
  • Main Definitions and Notations
  • Main Definitions and Notations
  • State Inference
  • Filtering and Smoothing Recursions
  • Advanced Topics in Smoothing
  • Applications of Smoothing
  • Monte Carlo Methods
  • Sequential Monte Carlo Methods
  • Advanced Topics in Sequential Monte Carlo
  • Analysis of Sequential Monte Carlo Methods
  • Parameter Inference
  • Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing
  • Maximum Likelihood Inference, Part II: Monte Carlo Optimization
  • Statistical Properties of the Maximum Likelihood Estimator
  • Fully Bayesian Approaches
  • Background and Complements
  • Elements of Markov Chain Theory
  • An Information-Theoretic Perspective on Order Estimation.