Thermodynamics of flowing systems with internal microstructure

Mystery.

Detalles Bibliográficos
Autor principal: Beris, Antony N., 1957- (-)
Otros Autores: Edwards, Brian J., 1964-
Formato: Libro electrónico
Idioma:Inglés
Publicado: New York : Oxford University Press 1994.
Colección:EBSCO Academic eBook Collection Complete.
Oxford engineering science series ; 36.
Oxford science publications.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b31846579*spi
Tabla de Contenidos:
  • Theory
  • The challenge of multiple time and length scales
  • The energy as the fundamental quantity
  • The generalized bracket approach
  • A simple application: The damped oscillator
  • Symplectic geometry in optics
  • Theories of optics
  • Symplectic structure
  • The symplectic vector space
  • The symplectic transformation
  • Gaussian and linear optics
  • Gaussian optics
  • Linear optics
  • Geometrical optics
  • The symplectic structure of geometrical optics
  • Fermat's principle
  • An overview of wave optics and electromagnetism
  • Hamiltonian mechanics of discrete particle systems
  • The calculus of variations
  • Hamilton's principle of least action
  • The Poisson bracket description of Hamilton's equations of motion
  • Properties of the Poisson bracket
  • The Liouville equation
  • The optical/mechanical analogy
  • A historical aside on the principle of least action
  • Fermat's reception
  • Maupertuis' contribution
  • Hamilton on the principle of least action
  • Equilibrium thermodynamics
  • The fundamental equation of thermodynamics
  • Other fundamental relationships of thermodynamics
  • The fundamental equation for a multicomponent system
  • Extensive variable formulation
  • Specific variable formulation
  • Density variable formulation
  • Equilibrium thermodynamics of a material with internal microstructure
  • Additivity in compound systems
  • Poisson brackets in continuous media
  • The material description of ideal fluid flow
  • The canonical Poisson bracket for ideal fluid flow
  • The calculus of functionals.