Outcome prediction in cancer

This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM...

Descripción completa

Detalles Bibliográficos
Otros Autores: Taktak, Azzam F. G. (-), Fisher, Anthony C., Dr
Formato: Libro electrónico
Idioma:Inglés
Publicado: Amsterdam ; Boston : Elsevier 2007.
Edición:1st ed
Colección:EBSCO Academic eBook Collection Complete.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3177152x*spi
Tabla de Contenidos:
  • Section 1 The Clinical Problem.
  • THE PREDICTIVE VALUE OF DETAILED HISTOLOGICAL STAGING OF SURGICAL RESECTION SPECIMENS IN ORAL CANCER
  • Chapter 1: The predictive value of detailed histological staging of surgical resection specimens in oral cancer.
  • J. Woolgar
  • Liverpool Dental School, UK
  • Chapter 2: Survival after Treatment of Intraocular Melanoma.
  • B.E. Damato, A.F.G. Taktak,
  • Royal Liverpool University Hospital, UK
  • Chapter 3: Recent developments in relative survival analysis.
  • T. Hakulinen, T.A. Dyba,
  • Finnish Cancer Registry
  • Section 2 Biological and Genetic Factors
  • Chapter 4: Environmental and genetic risk factors of lung cancer.
  • A. Cassidy, J.K. Field,
  • University of Liverpool, UK
  • Chapter 5: Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer.
  • A.S. Jones,
  • University Hospital Aintree, UK
  • Section 3 Mathematical Background of Prognostic Models
  • Chapter 6: Flexible hazard modelling for outcome prediction in cancer
  • perspectives for the use of bioinformatics knowledge.
  • E. Biganzoli1, P. Boracchi2
  • 1 Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy
  • 2 Universit̉ degli Studi di Milano, Milano, Italy
  • Chapter 7: Information geometry for survival analysis and feature selection by neural networks.
  • A. Eleuteri 1,2, R. Tagliaferri 3,4, L. Milano 1,2, M. De Laurentiis 1
  • 1Universit̉ di Napoli, Italy
  • 2INFN sez. Napoli, Italy
  • 3Università di Salerno, Italy
  • 4INFN sez. distaccata di Salerno, Italy
  • Chapter 8: Artificial neural networks used in the survival analysis of breast cancer patients: A node negative study.
  • C.T.C. Arsene, P.J. Lisboa,
  • Liverpool John Moores University, UK
  • Section 4 Application of Machine Learning Methods
  • Chapter 9: The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients.
  • A. Marchevsky,
  • Cedars-Sinai Medical Center, Los Angeles, USA
  • Chapter 10: Machine learning contribution to solve prognosis medical problems.
  • F. Baronti, A. Micheli, A. Passaro, A. Starita,
  • University of Pisa, Italy
  • Chapter 11: Classification of brain tumours by pattern recognition of Magnetic Resonance Imaging and Spectroscopic data.
  • A. Devos1, S. Van Huffel1 A.W. Simonetti1, M. van der Graaf2, A. Heerschap2, L.M.C. Buydens3
  • 1Katholieke Universiteit Leuven, Belgium
  • 2University Nijmegen Medical Centre, The Netherlands
  • 3Radboud University Nijmegen, The Netherlands
  • Chapter 12: Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data.
  • M. Kokuer1, R.N.G. Naguib1, P. Jancovic2, H.B. Younghusband3, R. Green3
  • 1Coventry University, UK
  • 2University of Birmingham, UK
  • 3University of Newfoundland, Canada
  • Chapter 13: The impact of microarray technology in brain cancer.
  • M. Kounelakis1, M. Zervakis1, X. Kotsiakis2
  • 1Technical University of Crete, GREECE
  • 2District Hospital of Chania, GREECE
  • Section 5 Dissemination of Information
  • Chapter 14: The web and the new generation of medical information.
  • J.M. Fonseca, A.D. Mora, P. Barroso
  • University of Lisbon, Portugal
  • Chapter 15: Geoconda: a web environment for multi-centre research.
  • C. Setzkorn, A.F.G. Taktak, B.E. Damato
  • Royal Liverpool University Hospital, Liverpool, UK
  • Chapter 16: The development and execution of medical prediction models.
  • M.W. Kattan1, M. G̲nen2, P.T. Scardino2
  • 1The Cleveland Clinic Fondation, Cleveland, USA
  • 2Memorial Sloan-Kettering Cancer Center, New York, USA.
  • The predictive value of detailed histological staging of surgical resection specimens in oral cancer
  • Survival after treatment of intraocular melanoma
  • Recent developments in relative survival analysis
  • Environmental and genetic risk factors of lung cancer
  • Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer
  • Flexible hazard modelling for outcome prediction in cancer: perspectives for the use of bioinformatics knowledge
  • Information geometry for survival analysis and feature selection by neural networks
  • Artificial neural networks used in the survival analysis of breast cancer patients: a node-negative study
  • The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients
  • Machine learning contribution to solve prognostic medical problems
  • Classification of brain tumors by pattern recognition of magnetic resonance imaging and spectroscopic data
  • Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data
  • The impact of microarray technology in brain cancer
  • The web and the new generation of medical information systems
  • Geoconda: a web environment for multi-centre research
  • The development and execution of medical prediction models.