Practical ship hydrodynamics

The author has provided the reader with comprehensive coverage of ship hydrodynamics with a focus on numerical methods now in use. The book provides a global overview of experimental and numerical methods for ship resistance and propulsion, manoeuvring and seakeeping. As boundary element techniques...

Descripción completa

Detalles Bibliográficos
Autor principal: Bertram, Volker (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford ; Boston : Butterworth-Heinemann 2000.
Colección:EBSCO Academic eBook Collection Complete.
Acceso en línea:Conectar con la versión electrónica
Ver en Universidad de Navarra:https://innopac.unav.es/record=b3164773x*spi
Tabla de Contenidos:
  • Introduction; Overview of problems and approaches; Model test and similarity laws; Full scale tests; Numerical approaches (Computational Fluid Dynamics); Basic equations, Basic techniques; Applications. Propeller Flows: Propeller geometry and other basics, Propeller curves; Numerical methods for propeller design; Lifting line theory; Lifting surface theory; BEM for propellers; Field methods; Cavitation; Experimental approach; Propeller design procedure. Resistance and propulsion: Resistance and propulsion concepts; Interaction between ship and propeller; Decomposition of resistance; Experimental approach; Towing tanks and experimental set up; Resistance test; Method ITTC 1957; Method of Hughes-Prohaska; Propulsion test; Additional resistance under service conditions; Simple design approaches; CFD approaches for steady flow; Wave resistance computations; Viscous flow computations; Problems for fast and unconventional ships. Ship Seakeeping: Introduction to seakeeping; Experimental approaches (model and full-scale); Waves and seaway; Airy waves (harmonic waves of small amplitude); Natural seaway; Wind and seaway; Wave climate; Numerical prediction of ship seakeeping; Overview of computational methods; Strip method; Rankine panel methods; Problems for fast and unconventional ships; Further quantities in regular waves; Ship responses in stationary seaway; Simulation methods; Long-term distributions; Slamming. Manoeuvring: Simulation of manoeuvring with known coefficients; Coordinate systems and definitions; Body forces and manoeuvring motions; Linear motion equations; CFD for manoeuvring; Experimental approaches; Manoeuvring tests for full-scale ships in sea trials; Model tests; Rudders; Computation of body forces; Slender-body theory; Influence of heel; Shallow-water effect; Jet thrusters; Stop manoeuvres. Boundary element methods: Green function formulation; Integral equations; Source elements; Point source; Regular first-order panel; Jensen panel; Higher-order panel; Vortex elements; Dipole elements; Point dipole. Numerical examples for BEM: Two-dimensional body in infinite flow; Theory; Numerical implementation.