ArcheoFOSS XIV 2020 Proceedings of the 14th International Conference, 15-17 October 2020.

This volume represents the editorial outcome of the 14th edition of ArcheoFOSS international conference, which took place online between 15-17 October 2020. The event has been held annually since 2006 and is dedicated to the theoretical framework and actual application of free and open source softwa...

Descripción completa

Detalles Bibliográficos
Autor principal: Bogdani, Julian (-)
Otros Autores: Montalbano, Riccardo, Rosati, Paolo
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford : Archaeopress 2021.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009814529606719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents Page
  • Foreword
  • ArcheoFOSS 2020 Committees
  • Strumenti digitali open-source per la documentazione della cultura visuale
  • Michele Pellegrino, Donato Coppola
  • Figura 1: a) Henri Breuil: rilievo diretto di un graffito parietale
  • b) riproduzione a pastello di bovidi presso la Grotta di Altamira (Groenen 2018: figg. 10, 22).
  • Figura 2: Grotta di Santa Maria di Agnano (Ostuni, BR): a) saggio di scavo archeologico (anno 2016)
  • b) supporti calcarei con sintassi decorative geometrico-lineari rinvenute nel corso della campagna di scavo 2016 (Coppola et al. 2017: Figura 8).
  • Figura 3: Grotta di Santa Maria di Agnano (Ostuni, BR): a) RTIbuilder, fase di detecting sphere
  • b) RTIviewer: visualizzazione in modalità Specular Enhancement.
  • Figura 4: Grotta di Santa Maria di Agnano (Ostuni, BR): a) Blender: lightdome virtuale con camera ortografica e mesh dell'oggetto
  • b) RTIviewer: visualizzazione in Specular Enhancement del procedimento v-RTI.
  • Figura 5: Grotta di Santa Maria di Agnano (Ostuni, BR): a-b) visualizzazione del dettaglio di un supporto calcareo con incisioni lineari non-figurative (SMA-test_2) in modalità Specular Enhancement [a) d.c. 90, sp. 05, h. s. 95
  • b) d.c. 0, sp. 30, h. s. 1
  • Valutazione integrata delle dinamiche di rischio di erosione del suolo
  • Stefano De Angeli et al
  • Figura 1: Struttura generale del sistema RESEARCH: catene di processamento e piattaforma Web-GIS (@RESEARCH Project).
  • Tabella 1: Valori di vulnerabilità ed esposizione alla minaccia delle varie tipologie di evidenze archeologiche.
  • Figura 2: Falerii Novi, area campione. Modello USPD: DTM finale con variazioni dei valori di altitudine (@RESEARCH Project).
  • Figura 3: Falerii Novi, area campione. Mappa di minaccia dell'erosione del suolo (@RESEARCH Project).
  • Figura 4: Falerii Novi, area meridionale. Restituzione 2D delle evidenze archeologiche individuate con valori di profondità dei singoli pixel (@RESEARCH Project).
  • Figura 5: Falerii Novi, area meridionale. Mappa di vulnerabilità archeologica correlata alla minaccia di erosione del suolo (@RESEARCH Project).
  • Figura 6: Falerii Novi, area campione. Mappa di rischio finale (@RESEARCH Project).
  • Rome - NE Palatine slopes
  • Emanuele Brienza, Giovanni Caratelli, Lorenzo Fornaciari, Cecilia Giorgi
  • Figure 1: Rome, NE Palatine slopes. Orthophotomosaic produced by CNR at the end of the 2012 excavation campaign.
  • Figure 2: Rome, NE Palatine slopes. Orthographic view of the new 3D model representing the 'Baths of Elagabalus' and Vigna Barberini's substructions.
  • Figure 3: Rome, NE Palatine slopes. (a) Portion of the 3D model recently reprocessed with the CNR photographic archive, using multi-image photogrammetry
  • (b) the same portion of 3D model integrated by processing dataset acquired in the last topographic an
  • Figure 4: Rome, NE Palatine slopes. The new database on PostgreSQL/PostGIS performed on QGIS.
  • Figure 5: Rome, NE Palatine slopes. A first WebGIS development carried out thanks to the gishosting service of the Gter company (https://www.gishosting.gter.it/home/).
  • Figure 6: Rome, NE Palatine slopes. An example of exporting data in KML format and their integration in Google Earth platform.
  • Un workflow open-source per l'elaborazione delle immagini termiche da drone
  • Gabriele Ciccone
  • Figura 1: Esempi di immagine RGB e IR e schema dei voli effettuati.
  • Figura 2: Schema del workflow con software proprietari per l'elaborazione di immagini termiche.
  • Figura 3: Schema del workflow con software free e open-source per l'elaborazione di immagini termiche.
  • Figura 4: (a) Ortofoto in 4 bande (R, G, B, IR).
  • (b) Ortofoto nella singola banda IR.
  • Figura 5: Confronto di ortofoto in banda IR in differenti orari della stessa giornata.
  • Analysis of urban mobility in 18th-century Rome
  • Renata Ago, Domizia D'Erasmo
  • Figure 1: a) A section of the strada della Valle as depicted in Nolli's map
  • b) Example of a path that involves passing through a courtyard of a building in piazza Navona (base map: Nuova Topografia di Roma).
  • Figure 2: Result of the vectorization of all analysed paths by GIS platform.
  • Table 1: Extract of the first ten records of the table of attributes of private citizens' paths.
  • Figure 3: a) List of ten paths of private citizens passing through a street adjacent to piazza della Rotonda
  • b) vectorization result
  • c) list of returned records (base map: Nuova Topografia di Roma).
  • Figure 4: a) Vectorized paths around piazza della Rotonda
  • b) transformation of lines into points set 10 m apart
  • c) Kernel analysis (Base map: Nuova Topografia di Roma).
  • Figure 5: Heatmap of ceremonial paths (14) of the 18th century (base maps: Nuova Topografia di Roma and Bing Satellite).
  • Figure 6: a) Heatmap of home-business paths in 1739
  • b) heatmap of home-business paths in 1749
  • c) heatmap of home-business paths in 1739
  • d) heatmap of home-business paths in 1749 (base maps: Nuova Topografia di Roma and Bing Satellite).
  • Towards FreeCAD experimentation and validation
  • Filippo Diara, Fulvio Rinaudo
  • Figure 1: Knowledge processes: from metric survey (A) to stratigraphic survey and analysis (B and C), until the parametric model construction (D).
  • Figure 2: FreeCAD platform and parametric model of the refectory with stratigraphic units.
  • Figure 3: Stratigraphic diagrams implemented as semantic data (Harris Matrix of north wall of the refectory of medieval Staffarda Abbey).
  • Figure 4. SQL query by using Reporting workbench and statement configuration: selection of stone elements and their description (result on CSV).
  • FLOS for Museums: open solutions to train communities and manage heritage sites
  • Paolo Rosati
  • N.
  • Name
  • Description
  • 1
  • Evolution
  • To evolve the museum space and its exhibits digitally, and mediate a new kind of knowledge (STEAM).
  • 2
  • Empowering
  • To empower the scientific segments and the editorial management of the heritage institution, writing about new discoveries and filing patents.
  • 3
  • Interconnection
  • To build an interconnection between the museum and the neighbors of the city, creating stable and operative communities nearby the institution.
  • 4
  • Economic growth
  • To teach self-employment techniques helping family economies from a start-up level.
  • 5
  • Return school
  • To reach out to young people prone to early school leaving, projecting open spaces with a FLOS habitat for them, which can stimulate their curiosity and spirit of believing in themselves.
  • 6
  • Lifestyle rank
  • To increase in the museum communities the need of a plain cultural existence and growth in lifestyle ranking.
  • 7
  • Deep study
  • To explore deeply with the communities the collections.
  • 8
  • Museum Economy
  • To enrich the museum economy with new editorial products, open-access, online catalogues, linked open-data for projecting new web services for the online communities.
  • 9
  • Research
  • To let to the citizens, investigate the daily fundamental role of the researchers and rise the appreciation on the great developments of science.
  • 10
  • Challenges
  • To educate communities in solidarity, equality, environmental importance, and green habits (as reuse, recycling and self-made skills).
  • Table 1: Top 10 practices for the 21st-century museums, based on the study of the author during the case studies (infra 3).
  • N.
  • Museum/
  • Archaeological site
  • Project name
  • Place/s
  • Year/s
  • Main activities
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Table 2: The six activities by Una Quantum in cultural heritage management using FLOSS tools.
  • Classroom Name
  • Number of Classes
  • Software/code
  • Average age
  • Participants
  • Coding
  • 3
  • JavaScript
  • 32
  • 9
  • Photogrammetry
  • 6
  • Regard 3D Mesh Lab Cloud Compare
  • 25
  • 31
  • 3D modelling
  • 5
  • Blender
  • 23
  • 29
  • Geographical Information Systems (GIS)
  • 6
  • QGIS Pyarchinit
  • 26
  • 50
  • Virtual Tour 360°
  • 3
  • Pannellum
  • 23
  • 15
  • Tot. classrooms
  • Tot. courses
  • Tot. FLOSS Software
  • Average age
  • Tot.
  • Participants
  • 5
  • 23
  • 7
  • 25.8
  • 134
  • Table 3: FLOSS classrooms in two-year activities at MUCIV, Rome.
  • Table 4: Free access classrooms at MNETRU of Rome during the 'Circuiti' program
  • Table 5: The digital excavation field-school.
  • Table 6: Summer camp at the Museo Civico Archeologico Rodolfo Lanciani in Guidonia (Rome).
  • Table 7: Building the Museo delle Culture 'Villa Garibaldi (MUDECU), GNU' site. Some free licensed CMS for museum sites.
  • Table 8: Overview of FLOS software used, debugged, developed for training and labs in public museums.
  • Table 9: Utility of FLOSS technologies in heritage-institution management.
  • Table 10: The business model for developing techno-creative spaces.
  • The virtual countryman. A GRASS-GIS tool for ancient cultivation recognition
  • Augusto Palombini
  • Figure 1: Virtual reconstruction of Iron Age and Roman landscapes in the Upper Tiber Valley (Arnoldus-Huydzendveld et al. 2012
  • Pietroni et al. 2013).
  • Figure 2: Flowchart of the landscape reconstruction pipeline, as conceived by the CNR Virtual Heritage Lab after the Tiber Valley Project.