Evolution and applications of quantum computing

A holistic approach to the revolutionary world of quantum computing is presented in this book, which reveals valuable insights into this rapidly emerging technology. The book reflects the dependence of quantum computing on the physical phenomenon of superposition, entanglement, teleportation, and in...

Descripción completa

Detalles Bibliográficos
Otros Autores: Mohanty, Sachi Nandan, editor (editor), Aluvalu, Rajanikanth, editor, Mohanty, Sarita, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009811329406719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Chapter 1 Introduction to Quantum Computing
  • 1.1 Quantum Computation
  • 1.2 Importance of Quantum Mechanics
  • 1.3 Security Options in Quantum Mechanics
  • 1.4 Quantum States and Qubits
  • 1.5 Quantum Mechanics Interpretation
  • 1.6 Quantum Mechanics Implementation
  • 1.6.1 Photon Polarization Representation
  • 1.7 Quantum Computation
  • 1.7.1 Quantum Gates
  • 1.8 Comparison of Quantum and Classical Computation
  • 1.9 Quantum Cryptography
  • 1.10 QKD
  • 1.11 Conclusion
  • References
  • Chapter 2 Fundamentals of Quantum Computing and Significance of Innovation
  • 2.1 Quantum Reckoning Mechanism
  • 2.2 Significance of Quantum Computing
  • 2.3 Security Opportunities in Quantum Computing
  • 2.4 Quantum States of Qubit
  • 2.5 Quantum Computing Analysis
  • 2.6 Quantum Computing Development Mechanism
  • 2.7 Representation of Photon Polarization
  • 2.8 Theory of Quantum Computing
  • 2.9 Quantum Logical Gates
  • 2.9.1 I-Qubit GATE
  • 2.9.2 Hadamard-GATE
  • 2.9.3 NOT_GATE_QUANTUM or Pauli_X-GATE
  • 2.9.3.1 Pauli_Y-GATE
  • 2.9.3.2 Pauli_Z-GATE
  • 2.9.3.3 Pauli_S-Gate
  • 2.9.4 Two-Qubit GATE
  • 2.9.5 Controlled NOT(C-NOT)
  • 2.9.6 The Two-Qubits are Swapped Using SWAP_GATE
  • 2.9.7 C-Z-GATE (Controlled Z-GATE)
  • 2.9.8 C-P-GATE (Controlled-Phase-GATE)
  • 2.9.9 Three-Qubit Quantum GATE
  • 2.9.9.1 GATE: Toffoli Gate
  • 2.9.10 F-C-S GATE (Fredkin Controlled Swap-GATE)
  • 2.10 Quantum Computation and Classical Computation Comparison
  • 2.11 Quantum Cryptography
  • 2.12 Quantum Key Distribution - QKD
  • 2.13 Conclusion
  • References
  • Chapter 3 Analysis of Design Quantum Multiplexer Using CSWAP and Controlled-R Gates
  • 3.1 Introduction
  • 3.2 Mathematical Background of Quantum Circuits
  • 3.2.1 Hadamard Gate
  • 3.2.2 CSWAP Gates
  • 3.2.3 Controlled-R Gates.
  • 3.3 Methodology of Designing Quantum Multiplexer (QMUX)
  • 3.3.1 QMUX Using CSWAP Gates
  • 3.3.1.1 Generalization
  • 3.3.2 QMUX Using Controlled-R Gates
  • 3.4 Analysis and Synthesis of Proposed Methodology
  • 3.5 Complexity and Cost of Quantum Circuits
  • 3.6 Conclusion
  • References
  • Chapter 4 Artificial Intelligence and Machine Learning Algorithms in Quantum Computing Domain
  • 4.1 Introduction
  • 4.1.1 Quantum Computing Convolutional Neural Network
  • 4.2 Literature Survey
  • 4.3 Quantum Algorithms Characteristics Used in Machine Learning Problems
  • 4.3.1 Minimizing Quantum Algorithm
  • 4.3.2 K-NN Algorithm
  • 4.3.3 K-Means Algorithm
  • 4.4 Tree Tensor Networking
  • 4.5 TNN Implementation on IBM Quantum Processor
  • 4.6 Neurotomography
  • 4.7 Conclusion and Future Scope
  • References
  • Chapter 5 Building a Virtual Reality-Based Framework for the Education of Autistic Kids
  • 5.1 Introduction
  • 5.2 Literature Review
  • 5.3 Proposed Work
  • 5.3.1 Methodology
  • 5.3.2 Work Flow of Neural Style Transfer
  • 5.3.3 A-Frame
  • 5.3.3.1 Setting Up the Virtual World and Adding Components
  • 5.3.3.2 Adding Interactivity Through Raycasting
  • 5.3.3.3 Animating the Components
  • 5.3.4 Neural Style Transfer
  • 5.3.4.1 Choosing the Content and Styling Image
  • 5.3.4.2 Image Preprocessing and Generation of a Random Image
  • 5.3.4.3 Model Design and Extraction of Content and Style
  • 5.3.4.4 Loss Calculation
  • 5.3.4.5 Model Optimization
  • 5.4 Evaluation Metrics
  • 5.5 Results
  • 5.5.1 A-Frame
  • 5.5.2 Neural Style Transfer
  • 5.6 Conclusion
  • References
  • Chapter 6 Detection of Phishing URLs Using Machine Learning and Deep Learning Models Implementing a URL Feature Extractor
  • 6.1 Introduction
  • 6.2 Related Work
  • 6.3 Proposed Model
  • 6.3.1 URL Feature Extractor
  • 6.3.2 Dataset
  • 6.3.3 Methodologies
  • 6.3.3.1 AdaBoost Classifier.
  • 6.3.3.2 Gradient Boosting Classifier
  • 6.3.3.3 K-Nearest Neighbors
  • 6.3.3.4 Logistic Regression
  • 6.3.3.5 Artificial Neural Networks
  • 6.3.3.6 Support Vector Machines (SVM)
  • 6.3.3.7 Naïve Bayes Classifier
  • 6.4 Results
  • 6.5 Conclusions
  • References
  • Chapter 7 Detection of Malicious Emails and URLs Using Text Mining
  • 7.1 Introduction
  • 7.2 Related Works
  • 7.3 Dataset Description
  • 7.4 Proposed Architecture
  • 7.5 Methodology
  • 7.5.1 Methodology for the URL Dataset
  • 7.5.2 Methodology for the Email Dataset
  • 7.5.2.1 Overcoming the Overfitting Problem
  • 7.5.2.2 Tokenization
  • 7.5.2.3 Applying Machine Learning Algorithms
  • 7.5.3 Detecting Presence of Malicious URLs in Otherwise Non-Malicious Emails
  • 7.5.3.1 Preparation of Dataset
  • 7.5.3.2 Creation of Features
  • 7.5.3.3 Applying Machine Learning Algorithms
  • 7.6 Results
  • 7.6.1 URL Dataset
  • 7.6.2 Email Dataset
  • 7.6.3 Final Dataset
  • 7.7 Conclusion
  • References
  • Chapter 8 Quantum Data Traffic Analysis for Intrusion Detection System
  • 8.1 Introduction
  • 8.2 Literature Overview
  • 8.3 Methodology
  • 8.3.1 Autoviz
  • 8.3.2 Dataset
  • 8.3.3 Proposed Models
  • 8.3.3.1 Decision Tree
  • 8.3.3.2 Random Forest Classifier Algorithm
  • 8.3.3.3 AdaBoost Classifier
  • 8.3.3.4 Ridge Classifier
  • 8.3.3.5 Logistic Regression
  • 8.3.3.6 SVM-Linear Kernel
  • 8.3.3.7 Naive Bayes
  • 8.3.3.8 Quadratic Discriminant Analysis
  • 8.4 Results
  • 8.5 Conclusion
  • References
  • Chapter 9 Quantum Computing in Netnomy: A Networking Paradigm in e-Pharmaceutical Setting
  • 9.1 Introduction
  • 9.2 Discussion
  • 9.2.1 Exploring Market Functioning via Quantum Network Economy
  • 9.2.1.1 Internal Networking Marketing
  • 9.2.1.2 Layered Marketing
  • 9.2.1.3 Role of Marketing in Pharma Network Organizations
  • 9.2.1.4 Role of Marketing in Vertical Networking Organizations.
  • 9.2.1.5 Generic e-Commerce Entity Model in Pharmaceutical Industry
  • 9.2.2 Analyzing the Usability of Quantum Netnomics in Attending Economic Development
  • 9.2.2.1 Theory of 4Ps in Pharma Marketing Mix
  • 9.2.2.2 Buying Behavior of the e-Consumers
  • 9.2.2.3 Maintaining of Privacy and Security via Quantum Technology in e-Structure
  • 9.2.2.4 Interface Influencing Sales
  • 9.3 Results
  • 9.4 Conclusion
  • References
  • Chapter 10 Machine Learning Approach in the Indian Service Industry: A Case Study on Indian Banks
  • 10.1 Introduction
  • 10.2 Literature Survey
  • 10.3 Experimental Results
  • 10.4 Conclusion
  • References
  • Chapter 11 Accelerating Drug Discovery with Quantum Computing
  • 11.1 Introduction
  • 11.2 Working Nature of Quantum Computers
  • 11.3 Use Cases of Quantum Computing in Drug Discovery
  • 11.4 Target Drug Identification and Validation
  • 11.5 Drug Discovery Using Quantum Computers is Expected to Start by 2030
  • 11.6 Conclusion
  • References
  • Chapter 12 Problems and Demanding Situations in Traditional Cryptography: An Insistence for Quantum Computing to Secure Private Information
  • 12.1 Introduction to Cryptography
  • 12.1.1 Confidentiality
  • 12.1.2 Authentication
  • 12.1.3 Integrity
  • 12.1.4 Non-Repudiation
  • 12.2 Different Types of Cryptography
  • 12.2.1 One-Way Processing
  • 12.2.1.1 Hash Function (One-Way Processing)
  • 12.2.2 Two-Way Processing
  • 12.2.2.1 Symmetric Cryptography
  • 12.2.2.2 Asymmetric Cryptography
  • 12.2.3 Algorithms Types
  • 12.2.3.1 Stream Cipher
  • 12.2.3.2 Block Cipher
  • 12.2.4 Modes of Algorithm
  • 12.2.4.1 Cipher Feedback Mode
  • 12.2.4.2 Output Feedback Mode
  • 12.2.4.3 Cipher Block Chaining Mode
  • 12.2.4.4 Electronic Code Book
  • 12.3 Common Attacks
  • 12.3.1 Passive Attacks
  • 12.3.1.1 Traffic Analysis
  • 12.3.1.2 Eavesdropping
  • 12.3.1.3 Foot Printing
  • 12.3.1.4 War Driving.
  • 12.3.1.5 Spying
  • 12.3.2 Active Attacks
  • 12.3.2.1 Denial of Service
  • 12.3.2.2 Distributed Denial of Service (DDOS)
  • 12.3.2.3 Message Modification
  • 12.3.2.4 Masquerade
  • 12.3.2.5 Trojans
  • 12.3.2.6 Replay Attacks
  • 12.3.3 Programming Weapons for the Attackers
  • 12.3.3.1 Dormant Phase
  • 12.3.3.2 Propagation Phase
  • 12.3.3.3 Triggering Phase
  • 12.3.3.4 Execution Phase
  • 12.4 Recent Cyber Attacks
  • 12.5 Drawbacks of Traditional Cryptography
  • 12.5.1 Cost and Time Delay
  • 12.5.2 Disclosure of Mathematical Computation
  • 12.5.3 Unsalted Hashing
  • 12.5.4 Attacks
  • 12.6 Need of Quantum Cryptography
  • 12.6.1 Quantum Mechanics
  • 12.7 Evolution of Quantum Cryptography
  • 12.8 Conclusion and Future Work
  • References
  • Chapter 13 Identification of Bacterial Diseases in Plants Using Re-Trained Transfer Learning in Quantum Computing Environment
  • 13.1 Introduction
  • 13.2 Literature Review
  • 13.3 Proposed Methodology
  • 13.3.1 SVM Classifier
  • 13.3.2 Random Forest to Classify the Rice Leaf
  • 13.3.2.1 Image Pre-Processing
  • 13.3.2.2 Feature Extraction
  • 13.3.2.3 Classification
  • 13.4 Experiment Results
  • Conclusion
  • References
  • Chapter 14 Quantum Cryptography
  • 14.1 Fundamentals of Cryptography
  • 14.2 Principle of Quantum Cryptography
  • 14.2.1 Quantum vs. Conventional Cryptography
  • 14.3 Quantum Key Distribution Protocols
  • 14.3.1 Overview and BB84 Protocol
  • 14.3.2 The B92 Protocol
  • 14.3.3 E91 Protocol
  • 14.3.4 SARG04 Protocol
  • 14.4 Impact of the Sifting and Distillation Steps on the Key Size
  • 14.5 Cryptanalysis
  • 14.6 Quantum Key Distribution in the Real World
  • References
  • Chapter 15 Security Issues in Vehicular Ad Hoc Networks and Quantum Computing
  • 15.1 Introduction
  • 15.2 Overview of VANET Security
  • 15.2.1 Security of VANET
  • 15.2.2 Attacks are Classified.
  • 15.3 Architectural and Systematic Security Methods.