Building Responsible AI Algorithms A Framework for Transparency, Fairness, Safety, Privacy, and Robustness

This book introduces a Responsible AI framework and guides you through processes to apply at each stage of the machine learning (ML) life cycle, from problem definition to deployment, to reduce and mitigate the risks and harms found in artificial intelligence (AI) technologies. AI offers the ability...

Descripción completa

Detalles Bibliográficos
Autor principal: Duke, Toju (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2023.
Edición:1st ed. 2023.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009790338206719
Descripción
Sumario:This book introduces a Responsible AI framework and guides you through processes to apply at each stage of the machine learning (ML) life cycle, from problem definition to deployment, to reduce and mitigate the risks and harms found in artificial intelligence (AI) technologies. AI offers the ability to solve many problems today if implemented correctly and responsibly. This book helps you avoid negative impacts – that in some cases have caused loss of life – and develop models that are fair, transparent, safe, secure, and robust. The approach in this book raises your awareness of the missteps that can lead to negative outcomes in AI technologies and provides a Responsible AI framework to deliver responsible and ethical results in ML. It begins with an examination of the foundational elements of responsibility, principles, and data. Next comes guidance on implementation addressing issues such as fairness, transparency, safety, privacy, and robustness. The book helps you think responsibly while building AI and ML models and guides you through practical steps aimed at delivering responsible ML models, datasets, and products for your end users and customers. What You Will Learn Build AI/ML models using Responsible AI frameworks and processes Document information on your datasets and improve data quality Measure fairness metrics in ML models Identify harms and risks per task and run safety evaluations on ML models Create transparent AI/ML models Develop Responsible AI principles and organizational guidelines.
Descripción Física:1 online resource (196 pages)
ISBN:9781484293065