The Art of Reinforcement Learning Fundamentals, Mathematics, and Implementations with Python

Unlock the full potential of reinforcement learning (RL), a crucial subfield of Artificial Intelligence, with this comprehensive guide. This book provides a deep dive into RL's core concepts, mathematics, and practical algorithms, helping you to develop a thorough understanding of this cutting-...

Descripción completa

Detalles Bibliográficos
Autor principal: Hu, Michael (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2023.
Edición:1st ed. 2023.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009786705406719
Tabla de Contenidos:
  • Part I: Foundation
  • Chapter 1: Introduction to Reinforcement Learning
  • Chapter 2: Markov Decision Processes
  • Chapter 3: Dynamic Programming
  • Chapter 4: Monte Carlo Methods
  • Chapter 5: Temporal Difference Learning
  • Part II: Value Function Approximation
  • Chapter 6: Linear Value Function Approximation
  • Chapter 7: Nonlinear Value Function Approximation
  • Chapter 8: Improvement to DQN
  • Part III: Policy Approximation
  • Chapter 9: Policy Gradient Methods
  • Chapter 10: Problems with Continuous Action Space
  • Chapter 11: Advanced Policy Gradient Methods
  • Part IV: Advanced Topics
  • Chapter 12: Distributed Reinforcement Learning
  • Chapter 13: Curiosity-Driven Exploration
  • Chapter 14: Planning with a Model – AlphaZero.