Adaptive middleware for the internet of things the GAMBAS approach

Adaptive Middleware for the Internet of Things introduces a scalable, interoperable and privacy-preserving approach to realize IoT applications and discusses abstractions and mechanisms at the middleware level that simplify the realization of services that can adapt autonomously to the behavior of t...

Descripción completa

Detalles Bibliográficos
Otros Autores: Handte, Marcus, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Gistrup, Denmark ; Delft, Netherlands : River Publishers [2019]
Edición:1st ed
Colección:River Publishers series in communications.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009763127006719
Tabla de Contenidos:
  • Cover
  • Half Title
  • Series
  • Title
  • Copyright
  • Contents
  • Preface
  • List of Figures
  • List of Abbreviations
  • 1 Introduction
  • 1.1 Motivation
  • 1.2 GAMBAS Objectives
  • 1.3 Application Scenarios
  • 1.3.1 Mobility Scenario
  • 1.3.2 Environmental Scenario
  • 1.4 Overarching Vision
  • 1.4.1 Smart Cities
  • 1.4.2 Characteristics
  • 1.5 State of the Art
  • 1.5.1 Hardware Technologies
  • 1.5.2 Communication Middleware
  • 1.5.3 Context Management
  • 1.5.4 Sensing Applications
  • 1.6 Innovations
  • 2 Architecture
  • 2.1 Static Perspective
  • 2.1.1 Operational View
  • 2.1.2 Component View
  • 2.1.3 Data View
  • 2.2 Dynamic Perspective
  • 2.2.1 Acquisition View
  • 2.2.2 Processing View
  • 2.2.3 Inference View
  • 2.3 Interface Perspective
  • 2.3.1 Storage Interfaces
  • 2.3.2 Query Interfaces
  • 2.3.3 Privacy Interfaces
  • 2.3.4 Control Interfaces
  • 3 Data Acquisition
  • 3.1 Focus and Contribution
  • 3.1.1 Data Acquisition Frameworks
  • 3.1.2 Rapid Prototyping Tools
  • 3.1.3 Application-Specific Acquisition
  • 3.1.4 Contribution
  • 3.2 Data Acquisition Framework
  • 3.2.1 Component System
  • 3.2.2 Activation System
  • 3.3 Data Acquisition Components
  • 3.3.1 Context Recognition
  • 3.3.2 Intent Recognition
  • 4 Data Processing
  • 4.1 Focus and Contribution
  • 4.1.1 Data Representation
  • 4.1.2 Query Processing
  • 4.1.3 Contribution
  • 4.2 Data Model
  • 4.2.1 Data Definition
  • 4.2.2 Query Specification
  • 4.3 Data Discovery
  • 4.3.1 Architecture
  • 4.3.2 Metadata Management
  • 4.3.3 Querying Data Sources
  • 4.3.4 Security and Privacy
  • 4.3.5 Client-side Caching
  • 4.4 Data Processing
  • 4.4.1 Data Storage
  • 4.4.2 Query Processor
  • 5 Privacy Preservation
  • 5.1 Focus and Contribution
  • 5.1.1 Trusted Computing Hardware
  • 5.1.2 Key Exchange and Derivation
  • 5.1.3 Obfuscation and Generalization
  • 5.1.4 Contribution
  • 5.2 Privacy Framework.
  • 5.2.1 Overview
  • 5.2.2 Mechanisms
  • 5.3 Privacy Policy
  • 5.3.1 Automatic Generation
  • 5.3.2 Manual Fine-Tuning
  • 5.4 Privacy Integration
  • 5.4.1 Data Transfer
  • 5.4.2 Data Acquisition
  • 5.4.3 Data Processing
  • 6 Applications
  • 6.1 Application Development Support
  • 6.1.1 Overview
  • 6.1.2 J2SE Support
  • 6.1.3 Android Support
  • 6.1.4 Application Examples
  • 6.2 Application Architecture
  • 6.2.1 Mobility Scenario
  • 6.2.2 Environmental Scenario
  • 6.3 Application Components
  • 6.3.1 Application Services
  • 6.3.2 Sensing Applications
  • 6.3.3 End-user Applications
  • 6.3.4 Operator Applications
  • 6.4 Application Evaluation
  • 7 Conclusion
  • Bibliography
  • Index
  • About the Authors.