Hybrid perovskite solar cells characteristics and operation

Detalles Bibliográficos
Otros Autores: Fujiwara, Hiroyuki, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Weinheim, Germany : Wiley-VCH [2022]
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009755212806719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • About the Editor
  • Chapter 1 Introduction
  • 1.1 Hybrid Perovskite Solar Cells
  • 1.2 Unique Natures of Hybrid Perovskites
  • 1.2.1 Notable Characteristics of Hybrid Perovskites
  • 1.2.2 Fundamental Properties of MAPbI3
  • 1.2.3 Why Hybrid Perovskite Solar Cells Show High Efficiency?
  • 1.3 Advantages of Hybrid Perovskite Solar Cells
  • 1.3.1 Band Gap Tunability
  • 1.3.2 High Voc
  • 1.3.3 Low Temperature Coefficient
  • 1.4 Challenges for Hybrid Perovskites
  • 1.4.1 Requirement of Improved Stability
  • 1.4.2 Large‐Area Solar Cells
  • 1.4.3 Toxicity of Pb and Sn Compounds
  • 1.5 Overview of this Book
  • Acknowledgment
  • References
  • Chapter 2 Overview of Hybrid Perovskite Solar Cells
  • 2.1 Introduction
  • 2.2 Historical Backgrounds of Halide Perovskite Photovoltaics
  • 2.3 Semiconductor Properties of Organo Lead Halide Perovskites
  • 2.4 Working Principle of Perovskite Photovoltaics
  • 2.5 Compositional Design of the Halide Perovskite Absorbers
  • 2.6 Strategy for Stabilizing Perovskite Solar Cells
  • 2.7 All Inorganic and Lead‐Free Perovskites
  • 2.8 Development of High‐Efficiency Tandem Solar Cells
  • 2.9 Conclusion and Perspectives
  • References
  • Part I Characteristics of Hybrid Perovskites
  • Chapter 3 Crystal Structures
  • 3.1 What Is Hybrid Perovskite?
  • 3.2 Structures of Hybrid Perovskite Crystals
  • 3.2.1 Crystal Structure of MAPbI3
  • 3.2.2 Lattice Parameters of Hybrid Perovskites
  • 3.2.3 Secondary Phase Materials
  • 3.3 Tolerance Factor
  • 3.3.1 Tolerance Factor of Hybrid Perovskites
  • 3.3.2 Tolerance Factor of Mixed‐Cation Perovskites
  • 3.4 Phase Change by Temperature
  • 3.5 Refined Structures of Hybrid Perovskites
  • 3.5.1 Orientation of Center Cations
  • 3.5.2 Relaxation of Center Cations
  • Acknowledgment
  • References
  • Chapter 4 Optical Properties.
  • 4.1 Introduction
  • 4.2 Light Absorption in MAPbI3
  • 4.2.1 Visible/UV Region
  • 4.2.2 IR Region
  • 4.2.3 THz Region
  • 4.3 Band Gap of Hybrid Perovskites
  • 4.3.1 Band Gap Analysis of MAPbI3
  • 4.3.2 Band Gap of Basic Perovskites
  • 4.3.3 Band Gap Variation in Perovskite Alloys
  • 4.4 True Absorption Coefficient of MAPbI3
  • 4.4.1 Principles of Optical Measurements
  • 4.4.2 Interpretation of α Variation
  • 4.5 Universal Rules for Hybrid Perovskite Optical Properties
  • 4.5.1 Variation with Center Cation
  • 4.5.2 Variation with Halide Anion
  • 4.6 Subgap Absorption Characteristics
  • 4.7 Temperature Effect on Absorption Properties
  • 4.8 Excitonic Properties of Hybrid Perovskites
  • References
  • Chapter 5 Physical Properties Determined by Density Functional Theory
  • 5.1 Introduction
  • 5.2 What Is DFT?
  • 5.2.1 Basic Principles
  • 5.2.2 Assumptions and Limitations
  • 5.3 Crystal Structures Determined by DFT
  • 5.3.1 Hybrid Perovskite Structures
  • 5.3.2 Organic‐Center Cations
  • 5.4 Band Structures
  • 5.4.1 Band Structures of Hybrid Perovskites
  • 5.4.2 Direct-Indirect Issue of Hybrid Perovskite
  • 5.4.3 Density of States
  • 5.4.4 Effective Mass
  • 5.5 Band Gap
  • 5.5.1 What Determines Band Gap?
  • 5.5.2 Effect of Center Cation
  • 5.5.3 Effect of Halide Anion
  • 5.6 Defect Physics
  • Acknowledgment
  • References
  • Chapter 6 Carrier Transport Properties
  • 6.1 Introduction
  • 6.2 Carrier Properties of Hybrid Perovskites
  • 6.2.1 Self‐Doping in Hybrid Perovskites
  • 6.2.2 Effect of Carrier Concentration on Mobility
  • 6.3 Carrier Mobility of MAPbI3
  • 6.3.1 Variation of Mobility with Characterization Method
  • 6.3.2 Temperature Dependence
  • 6.3.3 Effect of Effective Mass
  • 6.3.4 What Determines Maximum Mobility of MAPbI3?
  • 6.4 Diffusion Length
  • 6.5 Carrier Transport in Various Hybrid Perovskites
  • References.
  • Chapter 7 Ferroelectric Properties
  • 7.1 On the Importance of Ferroelectricity in Hybrid Perovskite Solar Cells
  • 7.2 Ferroelectricity
  • 7.2.1 Crystallographic Considerations
  • 7.2.2 Ferroelectricity in Thin Films
  • 7.2.3 Crystallography of MAPbI3 Thin Films
  • 7.3 Probing Ferroelectricity on the Microscale
  • 7.3.1 Atomic Force Microscopy
  • 7.3.2 Piezoresponse Force Microscopy
  • 7.3.3 Characterization of MAPbI3 Thin Films with sf‐PFM
  • 7.3.4 Correlative Domain Characterization
  • 7.3.4.1 Transmission Electron Microscopy
  • 7.3.4.2 X‐ray Diffraction
  • 7.3.4.3 Electron Backscatter Diffraction
  • 7.3.4.4 Kelvin Probe Force Microscopy
  • 7.3.5 Polarization Orientation
  • 7.3.6 Ferroelastic Effects in MAPbI3 Thin Films
  • 7.4 Ferroelectric Poling of MAPbI3
  • 7.4.1 AC Poling of MAPbI3
  • 7.4.2 Creeping Poling and Switching Events on the Microscopic Scale
  • 7.4.3 Macroscopic Effects of Poling
  • 7.5 Impact of Ferroelectricity on the Performance of Solar Cells
  • 7.5.1 Pitfalls During Sample Measurements
  • 7.5.2 Charge Carrier Dynamics in Solar Cells
  • References
  • Chapter 8 Photoluminescence Properties
  • 8.1 Introduction
  • 8.2 Overview of Luminescent Properties
  • 8.3 Room‐Temperature PL Spectra of a Hybrid Perovskite Thin Film
  • 8.4 Time‐Resolved PL of a Hybrid Perovskite
  • 8.5 PL Quantum Efficiency
  • 8.6 Temperature‐Dependent PL
  • 8.7 Material and Device Characterization by PL Spectroscopy
  • 8.7.1 Degradation and Healing of Hybrid Perovskites
  • 8.7.2 Charge Transfer Mechanism in Perovskite Solar Cell
  • 8.8 Conclusion
  • Acknowledgment
  • References
  • Chapter 9 Role of Grain Boundaries
  • 9.1 Introduction
  • 9.2 Role of Grain Boundaries in Device Performance
  • 9.2.1 Potential Barrier at GBs and Charge Transport
  • 9.2.2 Engineering of GB Properties
  • 9.3 Ion Migration Through Grain Boundaries.
  • 9.3.1 Enhanced Ion Transport at Grain Boundaries
  • 9.3.2 Role of GBs for Ion Migration
  • 9.4 Role of Grain Boundaries in Stability
  • 9.4.1 MAPbI3 Hydrated Phase at GBs
  • 9.4.2 Formation of Non‐perovskite Phase at GBs of FAPbI3
  • References
  • Chapter 10 Roles of Center Cations
  • 10.1 Introduction
  • 10.2 Cubic Perovskite Phase Tolerance Factor
  • 10.3 Thin Film Stability
  • 10.4 Optoelectronic Property Variations
  • 10.5 Solar Cell Performance
  • References
  • Part II Hybrid Perovskite Solar Cells
  • Chapter 11 Operational Principles of Hybrid Perovskite Solar Cells
  • 11.1 Introduction
  • 11.2 Operation of Hybrid Perovskite Solar Cells
  • 11.2.1 Operational Principle and Basic Structures
  • 11.2.2 Band Alignment
  • 11.3 Band Diagram of Hybrid Perovskite Solar Cells
  • 11.3.1 Device Simulation
  • 11.3.2 Experimental Observation
  • 11.4 Refined Analyses of Hybrid Perovskite Solar Cells
  • 11.4.1 Carrier Generation and Loss
  • 11.4.2 Power Loss Mechanism
  • 11.4.3 e‐ARC Software
  • 11.5 What Determines Voc?
  • 11.5.1 Effect of Interface
  • 11.5.2 Effect of Passivation
  • 11.5.3 Effect of Grain Boundary
  • References
  • Chapter 12 Efficiency Limits of Single and Tandem Solar Cells
  • 12.1 Introduction
  • 12.2 What Is the SQ Limit?
  • 12.2.1 Physical Model
  • 12.2.2 Blackbody Radiation
  • 12.2.3 SQ Limit
  • 12.3 Maximum Efficiencies of Perovskite Single Cells
  • 12.3.1 Concept of Thin‐Film Limit
  • 12.3.2 EQE Calculation Method
  • 12.3.3 Maximum Efficiencies of Single Solar Cells
  • 12.3.4 Performance‐Limiting Factors of Hybrid Perovskite Devices
  • 12.4 Maximum Efficiency of Tandem Cells
  • 12.4.1 Optical Model and Assumptions
  • 12.4.2 Calculation of Tandem‐Cell EQE Spectra
  • 12.4.3 Maximum Efficiencies of Tandem Devices
  • 12.4.4 Realistic Maximum Efficiency of Tandem Cell
  • 12.5 Free Software for Efficiency Limit Calculation
  • References.
  • Chapter 13 Multi‐cation Hybrid Perovskite Solar Cells
  • 13.1 Introduction
  • 13.2 Types of A‐Site Multi‐cation Hybrid Perovskite Solar Cells
  • 13.2.1 Pb‐Based Multi‐cation Hybrid Perovskite Solar Cells
  • 13.2.2 Sn‐Based Multi‐cation Hybrid Perovskite Solar Cells
  • 13.3 Cation Selection in Mixed‐Cation Hybrid Perovskite Solar Cells
  • 13.3.1 Organic A‐Cations
  • 13.3.2 Inorganic A‐Cations
  • 13.4 Fabrication of Mixed‐Cation Hybrid Perovskite Solar Cells
  • 13.4.1 Traditional Fabrication Approach
  • 13.4.2 Emerging Fabrication Technologies
  • 13.5 Charge Transport Materials
  • 13.6 Surface Passivation
  • 13.7 Mixed B‐Cation Hybrid Organic-Inorganic Perovskite Solar Cells
  • 13.8 Basic Characterization of Mixed‐Cation Hybrid Perovskite Solar Cells
  • References
  • Chapter 14 Tin Halide Perovskite Solar Cells
  • 14.1 Introduction
  • 14.1.1 Device Structure and Operating Principle
  • 14.1.2 Crystal Structure
  • 14.2 Tin Perovskite Solar Cells
  • 14.2.1 Intrinsic Properties
  • 14.2.2 Carrier Lifetime and Diffusion Length
  • 14.3 The Status of Sn Perovskite Solar Cells
  • 14.3.1 Different Type of Sn Perovskite Solar Cells
  • 14.3.1.1 CsSnI3
  • 14.3.1.2 MASnI3
  • 14.3.1.3 FASnI3
  • 14.3.1.4 FAxMA1−xSnI3
  • 14.3.1.5 2D/3D FASnI3
  • 14.3.1.6 Sn-Ge mixed PSCs
  • 14.3.2 Strategies to Improve the Efficiency
  • 14.3.2.1 Film Fabrication Methods
  • 14.3.2.2 Use of Reducing Agents
  • 14.3.2.3 Doping Effect of Large Organic Cations
  • 14.3.2.4 Device Engineering and Lattice Relaxation
  • 14.4 Sn-Pb Perovskite Solar Cells
  • 14.4.1 Anomalous Bandgap of SnPb (The Bowing Effect)
  • 14.4.2 Physical Properties
  • 14.4.2.1 Intrinsic Carrier Concentration
  • 14.4.2.2 Carrier Lifetime and Diffusion Length
  • 14.5 The Status of Sn-Pb Perovskite Solar Cells
  • 14.5.1 Different Types of Sn-Pb Perovskite Solar Cells
  • 14.5.1.1 First Kind of Sn-Pb PSC absorber: MASnxPb1−xI3.
  • 14.5.1.2 Multi Cation Sn-Pb Perovskites: (FA, MA, Cs) (Sn, Pb) (I, Br, Cl)3.