Nanotechnology applications for solar energy systems

Nanotechnology Applications for Solar Energy Systems Understand the latest developments in solar nanotechnology with this comprehensive guide Solar energy has never seemed a more critical component of humanity's future. As global researchers and industries work to develop sustainable technologi...

Descripción completa

Detalles Bibliográficos
Otros Autores: Sheikholeslami, Mohsen, 1988- editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, England : John Wiley & Sons Ltd [2023]
Edición:1st
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009755097406719
Tabla de Contenidos:
  • Intro
  • Nanotechnology Applications for Solar Energy Systems
  • Contents
  • About the Editor
  • List of Contributors
  • Preface
  • 1 Solar Energy Applications
  • 1.1 Introduction and Recent Advances
  • 1.2 Solar Energy Applications
  • 1.2.1 Electricity Production Using Photovoltaics at Large Scale
  • 1.2.2 Small-Scale Electricity Production for Houses and Commercial Buildings
  • 1.2.3 Off-Grid Applications Using Photovoltaics
  • 1.2.4 Concentrating Solar Thermal Electricity
  • 1.2.5 Solar Thermochemical Processes
  • 1.2.6 Solar Water Heating
  • 1.2.7 Heating of Solar Architecture
  • 1.2.8 Air Conditioning Through Water Evaporation
  • 1.2.9 Artificial Photosynthesis
  • 1.2.10 Decomposing Waste and Biofuels Production
  • 1.3 Classification of Solar Energy Devices
  • 1.3.1 Concentrating Solar Power
  • 1.3.2 Building Integrated Solar Systems
  • 1.3.3 Solar-Thermal Collectors
  • 1.3.4 Solar Thermochemistry
  • 1.3.5 Solar Thermal Energy Storage
  • 1.3.6 Solar-Driven Water Distillation
  • 1.4 Benefits and Opportunities
  • 1.5 Challenges
  • 1.6 Future Aspects
  • 1.7 Conclusion
  • References
  • 2 Application of Nanofluid for Solar Stills
  • 2.1 Introduction
  • 2.2 Desalination Technology
  • 2.2.1 What is a Solar Still?
  • 2.2.2 Parameters Affecting Pure Water Yield of Basin Type SSs
  • 2.2.3 Pure Water Augmentation of Solar Still Units
  • 2.3 Nanofluid
  • 2.3.1 Nanofluid Basics
  • 2.3.2 Nanofluid Characteristics
  • 2.3.3 Nanofluid Application in Solar Desalination
  • References
  • 3 Classification of Concentrating Solar Collectors Based on Focusing Shape and Studying on Their Performance, Financial Evaluation, and Industrial Adoption
  • 3.1 Introduction
  • 3.1.1 Overview of Concentrating Solar Collectors
  • 3.1.2 Some of the Applications of Concentrating Solar Collectors
  • 3.2 Line Focus Concentrating Solar Collectors
  • 3.2.1 Linear Fresnel Reflector.
  • 3.2.2 Parabolic Trough Collector
  • 3.2.3 Compound Parabolic
  • 3.3 Point Focus and Other Concentrating Solar Collectors
  • 3.3.1 Central Receiver System
  • 3.3.2 Solar Dish
  • 3.3.3 Fresnel Lens
  • 3.4 Improving the Thermal Performance of Solar Concentrating Collectors
  • 3.5 Industrial Adoption and Costs of Solar Concentrating Collectors
  • 3.6 Conclusions and Recommendations
  • References
  • 4 Nanotechnology for Heat Transfer
  • 4.1 Introduction
  • 4.2 Classification of Nanomaterials
  • 4.2.1 Zero-dimensional (0D)
  • 4.2.2 One-dimensional (1D)
  • 4.2.3 Two-dimensional (2D)
  • 4.2.4 Three-dimensional (3D)
  • 4.3 Heat Transfer Characteristics and Applications of Nanotechnology on the Heat Transfer Enhancement
  • 4.3.1 Convective Heat Transfer
  • 4.3.2 Boiling Heat Transfer
  • 4.3.3 Thermal Conductivity
  • 4.3.4 Viscosity
  • 4.4 A Review of Studies and Recent Advances Using Nanomaterials in Energy Conversion, Energy Storage, and Heat Transfer Developm
  • 4.5 Recent Advances
  • 4.6 Challenges and Future Scope
  • 4.7 Conclusion
  • References
  • 5 Nanofluids in Linear Fresnel Reflector
  • 5.1 Introduction and Recent Advances of Linear Fresnel Reflectors
  • 5.2 The Idea of Using Nanofluids in Solar Collectors
  • 5.3 A Review of Studies with Nanofluid-based Linear Fresnel Reflector
  • 5.4 Remarks and Future Scope
  • 5.4.1 Advantages of LFR
  • 5.4.2 Disadvantages of LFR
  • 5.5 Conclusions
  • References
  • 6 Thermal Management and Performance Enhancement of Parabolic Trough Concentrators Using Nanofluids
  • 6.1 Introduction
  • 6.2 Recent Advances of Parabolic Trough Collectors
  • 6.3 Application of Nanofluids in PTCs
  • 6.4 State-of-Art Studies on Using Nanofluids in Parabolic Trough Collectors
  • 6.5 Conclusions and Future Scope
  • References
  • 7 Developing Innovations in Parabolic Trough Collectors (PTCs) Based on Numerical Studies
  • 7.1 Introduction.
  • 7.2 An Introduction to Simulation Software
  • 7.3 Numerical Studies
  • 7.3.1 Design Parameters and Working Conditions in PTCs
  • 7.3.2 Using Inserts in PTCs
  • 7.3.3 Using Surface Modification Methods in PTCs
  • 7.3.4 Using Nanofluids in PTCs
  • 7.3.5 Using Nanofluids and Other Passive Methods in PTCs
  • 7.3.6 PTCs Integrated into Cooling Systems
  • 7.3.7 PTCs Integrated into Concentrated Solar Power Plants
  • 7.3.8 PTCs Integrated into Solar-powered Cycles
  • 7.3.9 PTCs Integrated into Solar Industrial Process Heat Plants
  • 7.3.10 PTCs Integrated into Photovoltaic/Thermal (PV/T) System
  • 7.3.11 PTCs Integrated into Desalination Systems
  • 7.4 Challenges
  • 7.5 Conclusion
  • 7.6 Future Directions
  • References
  • 8 Nanofluids in Solar Thermal Parabolic Trough Collectors (PTCs)
  • 8.1 Introduction
  • 8.2 Fundamentals of PTCs
  • 8.2.1 Components of a PTC
  • 8.2.2 Mathematical Formulations of PTCs
  • 8.2.3 Experimental Analysis (Standard Test Methods)
  • 8.3 Heat Transfer Fluids (HTFs) in PTCs
  • 8.3.1 Thermal Oils
  • 8.3.2 Liquid-water Steam
  • 8.3.3 Pressurized Gasses
  • 8.3.4 Molten Salts
  • 8.3.5 Nanofluids
  • 8.4 Heat Transfer Improvement Methods in PTCs
  • 8.4.1 Design Parameters
  • 8.4.2 The Application of Nanofluids in PTCs
  • 8.4.3 Combination of Nanofluids and Other Thermal Efficiency Enhancement Methods
  • 8.5 Economic Analysis
  • 8.6 Challenges
  • 8.7 Conclusion
  • 8.8 Future Directions
  • Acknowledgment
  • References
  • 9 Applications of Nanotechnology in the Harvesting of Solar Energy
  • 9.1 Introduction
  • 9.1.1 Overview of the Status of the Solar Energy
  • 9.1.2 Nanotechnology Overview
  • 9.2 Solar Harvesting Technology Using Nanomaterials
  • 9.3 Various Modern Solar Harvesting Technologies
  • 9.3.1 Solar Collectors
  • 9.3.2 Fuel Cells
  • 9.3.3 Photocatalysis
  • 9.3.4 Solar Photovoltaics.
  • 9.4 Production Methods of Solar Cell Technology
  • 9.4.1 First Generation Solar Cell: Silicon Solar Cells
  • 9.4.2 Second Generation Solar Cells: Thin-film Solar Cell
  • 9.4.3 Third Generation Solar Cells
  • 9.5 Challenges in Using Nanotechnology
  • 9.6 Conclusion
  • References
  • 10 Tubular Solar Thermal System: Recent Development and Its Utilization
  • 10.1 Introduction
  • 10.2 Different Tubular Solar System
  • 10.2.1 Evacuated Tubular Collector
  • 10.2.2 Tubular Solar Still
  • 10.2.3 Tubular System for Concentrating Solar Power
  • 10.3 Heat Transfer Fluid for the Tubular System
  • 10.3.1 Nanofluid
  • 10.3.2 Nano-enhanced Molten Salt
  • 10.3.3 Liquid Metal
  • 10.4 Conclusion
  • References
  • 11 Nanofluids in Flat Plate Solar Collectors
  • 11.1 Nanofluid in Flat Plate Collector
  • 11.2 Introduction and Recent Advances of Flat Plate Collectors
  • 11.3 Application of Nanofluids in the Flat Plate Collector
  • 11.4 A Review of Studies Using Nanomaterials in Flat Pale Collector
  • 11.5 Remarks and Future Scope
  • 11.6 Conclusion
  • References
  • 12 Recent Advances in the Simulation of Solar Photovoltaic Cell Cooling Systems Using Nanofluids
  • 12.1 Introduction
  • 12.2 Photovoltaic Thermal (PVT) System
  • 12.3 Performance Parameters
  • 12.4 An Overview of Numerical Approaches
  • 12.5 Previous Research on PVT Systems
  • 12.5.1 PVT Nanofluid-Based Systems
  • 12.5.2 PVT Multiple-Nanofluid-Based Systems
  • 12.5.3 PVT/ PCM Nanofluid-Based Systems
  • 12.5.4 Economic Analysis in PVT Studies
  • 12.6 Future Works
  • 12.7 Conclusions
  • References
  • 13 Multiphase Modeling of Powder Flow in an Ejector of Solar-driven Refrigeration System by Eulerian-Lagrangian Approach
  • 13.1 Introduction
  • 13.2 Governing Equations
  • 13.2.1 Continuity Equation
  • 13.2.2 Momentum Equation
  • 13.3 Geometry Design and Meshing
  • 13.3.1 Generation of the Model.
  • 13.3.2 Mesh Generation and Study
  • 13.3.3 Grid Independency
  • 13.3.4 Validation
  • 13.4 Results
  • 13.4.1 Optimization of the Nozzle
  • 13.4.2 Investigation of the Relation between Outlet Velocity and Entrainment Parameter (N)
  • 13.4.3 Unsteady Case
  • 13.5 Conclusion
  • Declaration of interests
  • References
  • 14 Radiative Non-Newtonian Nanofluid Flow through Stretchable Disks: An Application to Solar Thermal Systems
  • 14.1 Introduction
  • 14.2 Problem Formulation
  • 14.3 Numerical Solution
  • 14.4 Results and Discussion
  • 14.5 Conclusions
  • References
  • 15 Cooling of PV/ T System with Nanofluid and PCM
  • 15.1 Introduction
  • 15.1.1 Overview
  • 15.1.2 Need for Cooling of Photovoltaics
  • 15.2 Application of Nanofluid and PCM for Cooling of PV/T System
  • 15.2.1 Nanofluids
  • 15.2.2 Phase Change Materials
  • 15.3 A Review of Studies Using Nanofluid and PCM for Cooling of PV/T System
  • 15.4 Remarks and Future Scope
  • 15.5 Conclusion
  • Acknowledgment
  • References
  • 16 Revival of Functional Nanofluid Photothermal Materials for Solar Still Applications
  • 16.1 Nanofluid Based Solar Stills
  • 16.2 General Factors for Efficient Solar Still
  • 16.2.1 Environmental Factors
  • 16.2.2 Physical Factors
  • 16.3 Development and Modifications
  • 16.3.1 Conventional Single-effect Solar Still
  • 16.3.2 Solar Reflectors
  • 16.3.3 Wicked Type Solar Stills
  • 16.4 Application of Nanofluids in Solar Still
  • 16.4.1 Methodologies for the Fabrication of Nanofluids
  • 16.4.2 Optical Properties of Nanofluids
  • 16.4.3 Photothermal of Nanofluids
  • 16.5 Carbon-based Nanofluid
  • 16.6 Metallic/ Metal Oxide Nanofluids
  • 16.7 Magnetic Nanofluids
  • 16.8 Solar Thermal Collectors
  • 16.9 Solar-driven Steam Generators
  • 16.10 Remarks and Future Scope
  • 16.11 Conclusion
  • References
  • 17 Nanotechnology in Solar Lighting.
  • 17.1 Optical Fiber Lighting Based on Sunlight.