Superconducting radiofrequency technology for accelerators state of the art and emerging trends

Detalles Bibliográficos
Otros Autores: Padamsee, Hasan, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Weinheim, Germany : Wiley-VCH GmbH [2023]
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752739606719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Part I Update of SRF Fundamentals
  • Chapter 1 Introduction
  • Chapter 2 SRF Fundamentals Review
  • 2.1 SRF Basics
  • 2.2 Fabrication and Processing on Nb‐Based SRF Structures
  • 2.2.1 Cavity Fabrication
  • 2.2.2 Preparation
  • 2.2.3 A Decade of Progress
  • 2.3 SRF Physics
  • 2.3.1 Zero DC Resistance
  • 2.3.2 Meissner Effect
  • 2.3.3 Surface Resistance and Surface Impedance in RF Fields
  • 2.3.4 Nonlocal Response of Supercurrent
  • 2.3.5 BCS
  • 2.3.6 Residual Resistance
  • 2.3.7 Smearing of Density of States
  • 2.3.8 Ginzburg-Landau (GL) Theory
  • 2.3.9 Critical Fields
  • 2.3.10 Comparison Between Ginzburg-Landau and BCS
  • 2.3.11 Derivation of Rs and Xs
  • Part II High Q Frontier: Performance Advances and Understanding
  • Chapter 3 Nitrogen‐Doping
  • 3.1 Introduction
  • 3.2 N‐Doping Discovery
  • 3.3 Surface Nitride
  • 3.4 Interstitial N
  • 3.5 Electron Mean Free Path Dependence
  • 3.5.1 LE‐µSR Measurements of Mean Free path
  • 3.6 Anti‐Q‐Slope Origins from BCS Resistance
  • 3.7 N‐Doping and Residual Resistance
  • 3.7.1 Trapped DC Flux Losses
  • 3.7.2 Residual Resistance from Hydride Losses
  • 3.7.3 Tunneling Measurements
  • 3.8 RF Field Dependence of the Energy Gap
  • 3.9 Frequency dependence of Anti‐Q‐Slope
  • 3.10 Theories for Anti‐Q‐Slope
  • 3.10.1 Xiao Theory
  • 3.10.2 Gurevich Theory
  • 3.10.3 Nonequilibrium Superconductivity
  • 3.10.4 Two‐Fluid Model‐Based on Weak Defects
  • 3.11 Quench Field of N‐Doped Cavities
  • 3.12 Evolution and Comparison of N‐doping Recipes
  • 3.13 High Q and Gradient R&amp
  • D Program for LCLS‐HE
  • 3.14 N‐Doping at Other Labs
  • 3.15 Summary of N‐doping
  • Chapter 4 High Q via 300 °C Bake (Mid‐T‐Bake)
  • 4.1 A Surprise Discovery
  • 4.2 Similarities to N‐Doping
  • 4.3 Mid‐T Baking at Other Labs
  • 4.4 The Low‐Field Q‐Slope (LFQS) and 340 °C Baking Cures.
  • 4.5 Losses at Very Low Fields
  • 4.6 Losses from Two‐Level Systems (TLS)
  • 4.7 Eliminating TLS Losses
  • Chapter 5 High Q\stquote s from DC Magnetic Flux Expulsion
  • 5.1 Trapped Flux Losses, Sensitivity
  • 5.2 Trapped Flux Sensitivity Models
  • 5.3 Vortex Physics
  • 5.4 Calculation of Sensitivity to Trapped Flux
  • 5.5 Dependence of Sensitivity on RF Field Amplitude
  • 5.6 DC Magnetic Flux Expulsion
  • 5.6.1 Fast versus Slow‐Cooling Discovery
  • 5.6.2 Thermoelectric Currents
  • 5.7 Cooling Rates for Flux Expulsion
  • 5.8 Flux Expulsion Patterns
  • 5.9 Geometric Effects - Flux Hole
  • 5.10 Flux Trapping With Quench
  • 5.11 Material Quality Variations
  • 5.12 Modeling Flux Trapping From Pinning Variations
  • Part III High Gradient Frontier: Performance Advances and Understanding
  • Chapter 6 High‐Field Q Slope (HFQS) - Understanding and Cures
  • 6.1 HFQS Summary
  • 6.2 HFQS in Low‐β Cavities
  • 6.3 Deconvolution of RBCS and Rres
  • 6.4 Depth of Baking Effect
  • 6.4.1 From Anodization
  • 6.4.2 From HF Rinsing
  • 6.4.3 Depth of Magnetic Field Penetration by LE‐μSR
  • 6.5 Role of the Oxide Layer and Role of N‐Infusion
  • 6.6 SIMS Studies of O, H, and OH Profiles
  • 6.7 Hydrogen Presence in HFQS
  • 6.8 TEM Studies on Hydrides
  • 6.9 Niobium-hydrogen Phase Diagram
  • 6.10 H Enrichment at Surface
  • 6.11 Q‐disease Review
  • 6.12 Visualizing Niobium Hydrides
  • 6.12.1 Cold‐stage Confocal Microscopy
  • 6.12.2 Cold‐stage Atomic Force Microscopy (AFM)
  • 6.13 Model for HFQS - Proximity Effect Breakdown of Nano‐hydrides
  • 6.13.1 Baking Benefit and Proximity Effect Model
  • 6.14 Positron Annihilation Studies of HFQS and Baking Effect
  • 6.15 Point Contact Tunneling Studies of HFQS and Baking Effect
  • Chapter 7 Quest for Higher Gradients: Two‐Step Baking and N‐Infusion
  • 7.1 Two‐Step Baking
  • 7.2 Subtle Effects of Two‐Step Baking - Bifurcation.
  • 7.2.1 Bifurcation Reduction
  • 7.3 N‐Infusion at 120 °C
  • 7.4 N‐Infusion at Medium Temperatures
  • 7.5 Unifying Quench Fields
  • 7.6 Quench Detection by Second Sound in Superfluid Helium
  • Chapter 8 Improvements in Cavity Preparation
  • 8.1 Comparisons of Cold and Warm Electropolishing Methods
  • 8.2 Chemical Soaking
  • 8.3 Optical Inspection System and Defects Found
  • 8.4 Robotics in Cavity Preparation
  • 8.5 Plasma Processing to Reduce Field Emission
  • Chapter 9 Pursuit of Higher Performance with Alternate Materials
  • 9.1 Nb Films on Cu Substrates
  • 9.1.1 Direct Current Magnetron Sputtering
  • 9.1.2 DC‐bias Diode Sputtering at High Temperature (400-600 °C)
  • 9.1.3 Seamless Cavity Coating
  • 9.1.4 Nb-Cu Films by ECR
  • 9.1.5 Nb-Cu Films via High‐Power Impulse Magnetron Sputtering (HIPIMS)
  • 9.2 Alternatives to Nb
  • 9.2.1 Nb3Sn
  • 9.2.2 MgB2
  • 9.2.3 NbN and NbTiN
  • 9.3 Multilayers
  • 9.3.1 SIS\stquote Structures
  • 9.3.2 Theoretical Estimates
  • 9.3.3 Results
  • 9.3.4 SS\stquote Structures
  • 9.4 Summary
  • Part IV Applications
  • Chapter 10 New Cavity Developments
  • 10.1 Crab Cavities for LHC High Luminosity
  • 10.2 Short‐Pulse X‐Rays (SPX) System for the APS Upgrade
  • 10.3 QWR Cavity for Acceleration
  • 10.4 Traveling Wave Structure Development
  • Chapter 11 Ongoing Applications
  • 11.1 Overview
  • 11.2 Low‐Beta Accelerators for Nuclear Science and Nuclear Astrophysics
  • 11.2.1 ATLAS at Argonne
  • 11.2.2 ISAC and ISAC‐II at TRIUMF
  • 11.2.3 SPIRAL II at GANIL
  • 11.2.4 HIE ISOLDE
  • 11.2.5 RILAC at RIKEN
  • 11.2.6 SPES Upgrade of ALPI at INFN
  • 11.2.7 FRIB at MSU
  • 11.2.8 RAON
  • 11.2.9 Spoke Resonator Structure Developments to Avoid Multipacting
  • 11.2.10 JAEA Upgrade
  • 11.2.11 HELIAC
  • 11.2.12 SARAF
  • 11.2.13 HIAF at IMP
  • 11.2.14 IFMIF
  • 11.3 High‐Intensity Proton Accelerators
  • 11.3.1 SNS
  • 11.3.2 ESS.
  • 11.3.3 Accelerator Driven Systems (CADS)
  • 11.3.4 CiADS (China Initiative Accelerator Driven System)
  • 11.3.5 Japan Atomic Energy Agency (JAEA) - ADS
  • 11.3.6 High‐Intensity Proton Accelerator Development in India
  • 11.3.7 PIP‐II and Beyond
  • 11.4 Electrons for Light Sources - Linacs
  • 11.4.1 European X‐ray Free Electron Laser (EXFEL)
  • 11.4.2 Linac Coherent Light Source LCLS‐II and LCLS‐HE (LCLS‐High Energy)
  • 11.4.3 Shanghai Coherent Light Facility (SCLF) SHINE
  • 11.4.4 Institute of Advanced Science Facilities (IASF)
  • 11.4.5 Polish Free‐Electron Laser POLFEL
  • 11.5 Electrons for Storage Ring Light Sources
  • 11.5.1 High‐Energy Photon Source (HEPS)
  • 11.5.2 Taiwan Photon Source (TPS)
  • 11.5.3 Higher Harmonic Cavities for Storage Rings Chaoen WANG, NSRRC, Taiwan
  • 11.5.4 BNL
  • 11.6 Electrons in Energy Recovery Linacs (ERL) for Light Sources &amp
  • Electron-Ion Colliders
  • 11.6.1 Prototyping ERL Technology at Cornell
  • 11.6.2 KEK ERLs
  • 11.6.3 Light‐House Project for Radiopharmaceuticals
  • 11.6.4 Peking ERL
  • 11.6.5 Berlin ERL
  • 11.6.6 MESA ERL
  • 11.6.7 SRF Photo‐injectors for ERLs
  • 11.7 Electrons for Nuclear Physics, Nuclear Astrophysics, Radio‐Isotope Production
  • 11.7.1 CEBAF at Jefferson Lab
  • 11.7.2 ARIEL at TRIUMF
  • 11.7.3 ERL for LHeC at CERN
  • 11.8 Crab Cavities for LHC High Luminosity
  • 11.9 Ongoing and Near‐Future Projects Summary
  • Chapter 12 Future Prospects for Large‐Scale SRF Applications
  • 12.1 The International Linear Collider (ILC) for High‐Energy Physics
  • 12.2 Future Circular Collider FCCee
  • 12.3 China Electron-Positron Collider, CEPC
  • Chapter 13 Quantum Computing with SRF Cavities
  • 13.1 Introduction to Quantum Computing
  • 13.2 Qubits
  • 13.3 Superposition and Coherence
  • 13.4 Entanglement
  • 13.5 2D SRF Qubits
  • 13.6 Josephson Junctions.
  • 13.7 Dilution Refrigerator for Milli‐Kelvin Temperatures
  • 13.8 Quantum Computing Examples
  • 13.9 3D SRF Qubits
  • 13.10 Cavity QED Quantum Processors and Memories
  • References
  • List of Symbols
  • List of Acronyms
  • Index
  • EULA.