Superconducting radiofrequency technology for accelerators state of the art and emerging trends
Otros Autores: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Weinheim, Germany :
Wiley-VCH GmbH
[2023]
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009752739606719 |
Tabla de Contenidos:
- Cover
- Title Page
- Copyright
- Contents
- Preface
- Part I Update of SRF Fundamentals
- Chapter 1 Introduction
- Chapter 2 SRF Fundamentals Review
- 2.1 SRF Basics
- 2.2 Fabrication and Processing on Nb‐Based SRF Structures
- 2.2.1 Cavity Fabrication
- 2.2.2 Preparation
- 2.2.3 A Decade of Progress
- 2.3 SRF Physics
- 2.3.1 Zero DC Resistance
- 2.3.2 Meissner Effect
- 2.3.3 Surface Resistance and Surface Impedance in RF Fields
- 2.3.4 Nonlocal Response of Supercurrent
- 2.3.5 BCS
- 2.3.6 Residual Resistance
- 2.3.7 Smearing of Density of States
- 2.3.8 Ginzburg-Landau (GL) Theory
- 2.3.9 Critical Fields
- 2.3.10 Comparison Between Ginzburg-Landau and BCS
- 2.3.11 Derivation of Rs and Xs
- Part II High Q Frontier: Performance Advances and Understanding
- Chapter 3 Nitrogen‐Doping
- 3.1 Introduction
- 3.2 N‐Doping Discovery
- 3.3 Surface Nitride
- 3.4 Interstitial N
- 3.5 Electron Mean Free Path Dependence
- 3.5.1 LE‐µSR Measurements of Mean Free path
- 3.6 Anti‐Q‐Slope Origins from BCS Resistance
- 3.7 N‐Doping and Residual Resistance
- 3.7.1 Trapped DC Flux Losses
- 3.7.2 Residual Resistance from Hydride Losses
- 3.7.3 Tunneling Measurements
- 3.8 RF Field Dependence of the Energy Gap
- 3.9 Frequency dependence of Anti‐Q‐Slope
- 3.10 Theories for Anti‐Q‐Slope
- 3.10.1 Xiao Theory
- 3.10.2 Gurevich Theory
- 3.10.3 Nonequilibrium Superconductivity
- 3.10.4 Two‐Fluid Model‐Based on Weak Defects
- 3.11 Quench Field of N‐Doped Cavities
- 3.12 Evolution and Comparison of N‐doping Recipes
- 3.13 High Q and Gradient R&
- D Program for LCLS‐HE
- 3.14 N‐Doping at Other Labs
- 3.15 Summary of N‐doping
- Chapter 4 High Q via 300 °C Bake (Mid‐T‐Bake)
- 4.1 A Surprise Discovery
- 4.2 Similarities to N‐Doping
- 4.3 Mid‐T Baking at Other Labs
- 4.4 The Low‐Field Q‐Slope (LFQS) and 340 °C Baking Cures.
- 4.5 Losses at Very Low Fields
- 4.6 Losses from Two‐Level Systems (TLS)
- 4.7 Eliminating TLS Losses
- Chapter 5 High Q\stquote s from DC Magnetic Flux Expulsion
- 5.1 Trapped Flux Losses, Sensitivity
- 5.2 Trapped Flux Sensitivity Models
- 5.3 Vortex Physics
- 5.4 Calculation of Sensitivity to Trapped Flux
- 5.5 Dependence of Sensitivity on RF Field Amplitude
- 5.6 DC Magnetic Flux Expulsion
- 5.6.1 Fast versus Slow‐Cooling Discovery
- 5.6.2 Thermoelectric Currents
- 5.7 Cooling Rates for Flux Expulsion
- 5.8 Flux Expulsion Patterns
- 5.9 Geometric Effects - Flux Hole
- 5.10 Flux Trapping With Quench
- 5.11 Material Quality Variations
- 5.12 Modeling Flux Trapping From Pinning Variations
- Part III High Gradient Frontier: Performance Advances and Understanding
- Chapter 6 High‐Field Q Slope (HFQS) - Understanding and Cures
- 6.1 HFQS Summary
- 6.2 HFQS in Low‐β Cavities
- 6.3 Deconvolution of RBCS and Rres
- 6.4 Depth of Baking Effect
- 6.4.1 From Anodization
- 6.4.2 From HF Rinsing
- 6.4.3 Depth of Magnetic Field Penetration by LE‐μSR
- 6.5 Role of the Oxide Layer and Role of N‐Infusion
- 6.6 SIMS Studies of O, H, and OH Profiles
- 6.7 Hydrogen Presence in HFQS
- 6.8 TEM Studies on Hydrides
- 6.9 Niobium-hydrogen Phase Diagram
- 6.10 H Enrichment at Surface
- 6.11 Q‐disease Review
- 6.12 Visualizing Niobium Hydrides
- 6.12.1 Cold‐stage Confocal Microscopy
- 6.12.2 Cold‐stage Atomic Force Microscopy (AFM)
- 6.13 Model for HFQS - Proximity Effect Breakdown of Nano‐hydrides
- 6.13.1 Baking Benefit and Proximity Effect Model
- 6.14 Positron Annihilation Studies of HFQS and Baking Effect
- 6.15 Point Contact Tunneling Studies of HFQS and Baking Effect
- Chapter 7 Quest for Higher Gradients: Two‐Step Baking and N‐Infusion
- 7.1 Two‐Step Baking
- 7.2 Subtle Effects of Two‐Step Baking - Bifurcation.
- 7.2.1 Bifurcation Reduction
- 7.3 N‐Infusion at 120 °C
- 7.4 N‐Infusion at Medium Temperatures
- 7.5 Unifying Quench Fields
- 7.6 Quench Detection by Second Sound in Superfluid Helium
- Chapter 8 Improvements in Cavity Preparation
- 8.1 Comparisons of Cold and Warm Electropolishing Methods
- 8.2 Chemical Soaking
- 8.3 Optical Inspection System and Defects Found
- 8.4 Robotics in Cavity Preparation
- 8.5 Plasma Processing to Reduce Field Emission
- Chapter 9 Pursuit of Higher Performance with Alternate Materials
- 9.1 Nb Films on Cu Substrates
- 9.1.1 Direct Current Magnetron Sputtering
- 9.1.2 DC‐bias Diode Sputtering at High Temperature (400-600 °C)
- 9.1.3 Seamless Cavity Coating
- 9.1.4 Nb-Cu Films by ECR
- 9.1.5 Nb-Cu Films via High‐Power Impulse Magnetron Sputtering (HIPIMS)
- 9.2 Alternatives to Nb
- 9.2.1 Nb3Sn
- 9.2.2 MgB2
- 9.2.3 NbN and NbTiN
- 9.3 Multilayers
- 9.3.1 SIS\stquote Structures
- 9.3.2 Theoretical Estimates
- 9.3.3 Results
- 9.3.4 SS\stquote Structures
- 9.4 Summary
- Part IV Applications
- Chapter 10 New Cavity Developments
- 10.1 Crab Cavities for LHC High Luminosity
- 10.2 Short‐Pulse X‐Rays (SPX) System for the APS Upgrade
- 10.3 QWR Cavity for Acceleration
- 10.4 Traveling Wave Structure Development
- Chapter 11 Ongoing Applications
- 11.1 Overview
- 11.2 Low‐Beta Accelerators for Nuclear Science and Nuclear Astrophysics
- 11.2.1 ATLAS at Argonne
- 11.2.2 ISAC and ISAC‐II at TRIUMF
- 11.2.3 SPIRAL II at GANIL
- 11.2.4 HIE ISOLDE
- 11.2.5 RILAC at RIKEN
- 11.2.6 SPES Upgrade of ALPI at INFN
- 11.2.7 FRIB at MSU
- 11.2.8 RAON
- 11.2.9 Spoke Resonator Structure Developments to Avoid Multipacting
- 11.2.10 JAEA Upgrade
- 11.2.11 HELIAC
- 11.2.12 SARAF
- 11.2.13 HIAF at IMP
- 11.2.14 IFMIF
- 11.3 High‐Intensity Proton Accelerators
- 11.3.1 SNS
- 11.3.2 ESS.
- 11.3.3 Accelerator Driven Systems (CADS)
- 11.3.4 CiADS (China Initiative Accelerator Driven System)
- 11.3.5 Japan Atomic Energy Agency (JAEA) - ADS
- 11.3.6 High‐Intensity Proton Accelerator Development in India
- 11.3.7 PIP‐II and Beyond
- 11.4 Electrons for Light Sources - Linacs
- 11.4.1 European X‐ray Free Electron Laser (EXFEL)
- 11.4.2 Linac Coherent Light Source LCLS‐II and LCLS‐HE (LCLS‐High Energy)
- 11.4.3 Shanghai Coherent Light Facility (SCLF) SHINE
- 11.4.4 Institute of Advanced Science Facilities (IASF)
- 11.4.5 Polish Free‐Electron Laser POLFEL
- 11.5 Electrons for Storage Ring Light Sources
- 11.5.1 High‐Energy Photon Source (HEPS)
- 11.5.2 Taiwan Photon Source (TPS)
- 11.5.3 Higher Harmonic Cavities for Storage Rings Chaoen WANG, NSRRC, Taiwan
- 11.5.4 BNL
- 11.6 Electrons in Energy Recovery Linacs (ERL) for Light Sources &
- Electron-Ion Colliders
- 11.6.1 Prototyping ERL Technology at Cornell
- 11.6.2 KEK ERLs
- 11.6.3 Light‐House Project for Radiopharmaceuticals
- 11.6.4 Peking ERL
- 11.6.5 Berlin ERL
- 11.6.6 MESA ERL
- 11.6.7 SRF Photo‐injectors for ERLs
- 11.7 Electrons for Nuclear Physics, Nuclear Astrophysics, Radio‐Isotope Production
- 11.7.1 CEBAF at Jefferson Lab
- 11.7.2 ARIEL at TRIUMF
- 11.7.3 ERL for LHeC at CERN
- 11.8 Crab Cavities for LHC High Luminosity
- 11.9 Ongoing and Near‐Future Projects Summary
- Chapter 12 Future Prospects for Large‐Scale SRF Applications
- 12.1 The International Linear Collider (ILC) for High‐Energy Physics
- 12.2 Future Circular Collider FCCee
- 12.3 China Electron-Positron Collider, CEPC
- Chapter 13 Quantum Computing with SRF Cavities
- 13.1 Introduction to Quantum Computing
- 13.2 Qubits
- 13.3 Superposition and Coherence
- 13.4 Entanglement
- 13.5 2D SRF Qubits
- 13.6 Josephson Junctions.
- 13.7 Dilution Refrigerator for Milli‐Kelvin Temperatures
- 13.8 Quantum Computing Examples
- 13.9 3D SRF Qubits
- 13.10 Cavity QED Quantum Processors and Memories
- References
- List of Symbols
- List of Acronyms
- Index
- EULA.