Absorption and scattering of light by small particles
Absorption and Scattering of Light by Small ParticlesTreating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small par...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Weinheim, [Germany] :
Wiley-VCH Verlag GmbH & Co. KGaA
2004.
|
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009664726506719 |
Tabla de Contenidos:
- Absorption and Scattering of Light by Small Particles; Contents; PART 1- BASIC THEORY; Chapter 1. Introduction; 1.1 Physical Basis for Scattering and Absorption; 1.2 Scattering by Fluctuations and by Particles; 1.3 Physics of Scattering by a Single Particle; 1.4 Collections of Particles; 1.5 The Direct and Inverse Problem; Notes and Comments; Chapter 2. Electromagnetic Theory; 2.1 Field Vectors and the Maxwell Equations; 2.2 Time-Harmonic Fields; 2.3 Frequency-Dependent Phenomenological Coefficients; 2.4 Spatial Dispersion; 2.5 Poynting Vector; 2.6 Plane-Wave Propagation in Unbounded Media
- 2.7 Reflection and Transmission at a Plane Boundary2.8 Reflection and Transmission by a Slab; 2.9 Experimental Determination of Optical Constants; 2.10 The Analogy Between a Slab and a Particle; 2.11 Polarization; Notes and Comments; Chapter 3. Absorption and Scattering by an Arbitrary Particle; 3.1 General Formulation of the Problem; 3.2 The Amplitude Scattering Matrix; 3.3 Scattering Matrix; 3.4 Extinction, Scattering, and Absorption; Notes and Comments; Chapter 4. Absorption and Scattering by a Sphere; 4.1 Solutions to the Vector Wave Equations
- 4.2 Expansion of a Plane Wave in Vector Spherical Harmonics4.3 The Internal and Scattered Fields; 4.4 Cross Sections and Matrix Elements; 4.5 Asymmetry Parameter and Radiation Pressure; 4.6 Radar Backscattering Cross Section; 4.7 Thermal Emission; 4.8 Computation of Scattering Coefficients and Cross Sections; Notes and Comments; Chapter 5. Particles Small Compared with the Wavelength; 5.1 Sphere Small Compared with the Wavelength; 5.2 The Electrostatics Approximation; 5.3 Ellipsoid in the Electrostatics Approximation; 5.4 Coated Ellipsoid; 5.5 The Polarizability Tensor; 5.6 Anisotropic Sphere
- 5.7 Scattering MatrixChapter 6. Rayleigh-Cans Theory; 6.1 Amplitude Scattering Matrix Elements; 6.2 Homogeneous Sphere; 6.3 Finite Cylinder; Notes and Comments; Chapter 7. Geometrical Optics; 7.1 Absorption and Scattering Cross Sections; 7.2 Angular Distribution of the Scattered Light: Rainbow Angles; 7.3 Scattering by Prisms: Ice Crystal Haloes; Notes and Comments; Chapter 8. A Potpourri of Particles; 8.1 Coated Sphere; 8.2 Anisotropic Sphere; 8.3 Optically Active Particles; 8.4 Infinite Right Circular Cylinder; 8.5 Inhomogeneous Particles: Average Dielectric Function
- 8.6 A Survey of Nonspherical Particles, Regular and IrregularNotes and Comments; PART 2-OPTICAL PROPERTIES OF BULK MA'TTER; Chapter 9. Classical Theories of Optical Constants; 9.1 The Lorentz Model; 9.2 The Multiple-Oscillator Model; 9.3 The Anisotropic Oscillator Model; 9.4 The Drude Model; 9.5 The Debye Relaxation Model; 9.6 General Relationship Between ε ́and ε""; Notes and Comments; Chapter 10. Measured Optical Properties; 10.1 Optical Properties of an Insulating Solid: MgO; 10.2 Optical Properties of a Metal: Aluminum; 10.3 Optical Properties of a Liquid: Water
- 10.4 A Comment on the Magnitude of k