Design for excellence in electronics manufacturing

"Design for Excellence in Electronics Manufacturing offers comprehensive, up to date coverage specific to design and reliability of electronics. The book will highlight how utilizing the DfX concepts of Design for Reliability, Design for Manufacturability, Design for Environment, Design for Tes...

Descripción completa

Detalles Bibliográficos
Otros Autores: Tulkoff, Cheryl, author (author), Caswell, Greg, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : Wiley [2021]
Colección:Wiley series in quality and reliability engineering.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009645676006719
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Contributors
  • List of Figures
  • List of Tables
  • Series Foreword
  • Foreword
  • Preface
  • Acknowledgments
  • Acronyms
  • Chapter 1 Introduction to Design for Excellence
  • 1.1 Design for Excellence (DfX) in Electronics Manufacturing
  • 1.2 Chapter : Establishing a Reliability Program
  • 1.3 Chapter : Design for Reliability (DfR)
  • 1.4 Chapter : Design for the Use Environment: Reliability Testing and Test Plan Development
  • 1.5 Chapter : Design for Manufacturability (DfM)
  • 1.6 Chapter : Design for Sustainability
  • 1.7 Chapter : Root Cause Problem‐Solving, Failure Analysis, and Continual Improvement Techniques
  • Chapter 2 Establishing a Reliability Program
  • 2.1 Introduction
  • 2.2 Best Practices and the Economics of a Reliability Program
  • 2.2.1 Best‐in‐Class Reliability Program Practices
  • 2.3 Elements of a Reliability Program
  • 2.3.1 Reliability Goals
  • 2.3.2 Defined Use Environments
  • 2.3.3 Software Reliability
  • 2.3.4 General Software Requirements
  • 2.4 Reliability Data
  • 2.4.1 Sources of Reliability Data
  • 2.4.2 Reliability Data from Suppliers
  • 2.5 Analyzing Reliability Data: Commonly Used Probability and Statistics Concepts in Reliability
  • 2.5.1 Reliability Probability in Electronics
  • 2.5.2 Reliability Statistics in Electronics
  • 2.5.2.1 Basic Statistics Assumptions and Caveats
  • 2.5.2.2 Variation Statistics
  • 2.5.2.3 Statistical Distributions Used in Reliability
  • 2.6 Reliability Analysis and Prediction Methods
  • 2.7 Summary
  • References
  • Chapter 3 Design for Reliability
  • 3.1 Introduction
  • 3.2 DfR and Physics of Failure
  • 3.2.1 Failure Modes and Effects Analysis
  • 3.2.2 Fault Tree Analysis
  • 3.2.3 Sneak Circuit Analysis
  • 3.2.4 DfR at the Concept Stage
  • 3.3 Specifications (Product and Environment Definitions and Concerns).
  • 3.4 Reliability Physics Analysis
  • 3.4.1 Reliability Physics Alternatives
  • 3.4.2 Reliability Physics Models and Examples
  • 3.4.2.1 Arrhenius Equation
  • 3.4.2.2 Eyring Equation
  • 3.4.2.3 Black's Equation
  • 3.4.2.4 Peck's Law
  • 3.4.2.5 Norris‐Landzberg Equation
  • 3.4.2.6 Creep Mechanisms
  • 3.4.3 Component Selection
  • 3.4.4 Critical Components
  • 3.4.5 Moisture‐Sensitivity Level
  • 3.4.6 Temperature‐Sensitivity Level
  • 3.4.7 Electrostatic Discharge
  • 3.4.8 Lifetime
  • 3.5 Surviving the Heat Wave
  • 3.6 Redundancy
  • 3.7 Plating Materials: Tin Whiskers
  • 3.8 Derating and Uprating
  • 3.9 Reliability of New Packaging Technologies
  • 3.10 Printed Circuit Boards
  • 3.10.1 Surface Finishes
  • 3.10.1.1 Organic Solderability Preservative (OSP)
  • 3.10.1.2 Immersion Silver (ImAg)
  • 3.10.1.3 Immersion Tin (ImSn)
  • 3.10.1.4 Electroless Nickel Immersion Gold (ENIG)
  • 3.10.1.5 Lead‐Free Hot Air Solder Leveled (HASL)
  • 3.10.2 Laminate Selection
  • 3.10.3 Cracking and Delamination
  • 3.10.4 Plated Through‐Holes and Vias
  • 3.10.5 Conductive Anodic Filament
  • 3.10.6 Strain and Flexure Issues
  • 3.10.7 Pad Cratering
  • 3.10.8 PCB Buckling
  • 3.10.9 Electrochemical Migration
  • 3.10.9.1 Temperature
  • 3.10.9.2 Relative Humidity
  • 3.10.9.3 Voltage Bias
  • 3.10.9.4 Conductor Spacing
  • 3.10.9.5 Condensation
  • 3.10.10 Cleanliness
  • 3.10.10.1 Chloride
  • 3.10.10.2 Bromide
  • 3.10.10.3 Cations
  • 3.10.10.4 Weak Organic Acids
  • 3.10.10.5 Cleanliness Testing
  • 3.11 Non‐Functional Pads
  • 3.12 Wearout Mechanisms
  • 3.12.1 IC Wearout
  • 3.13 Conformal Coating and Potting
  • 3.13.1 Silicone
  • 3.13.2 Polyurethane
  • 3.13.3 Epoxy
  • 3.13.4 Acrylic
  • 3.13.5 Superhydrophobics
  • References
  • Chapter 4 Design for the Use Environment: Reliability Testing and Test Plan Development
  • 4.1 Introduction
  • 4.1.1 Elements of a Testing Program.
  • 4.1.2 Know the Environment
  • 4.2 Standards and Measurements
  • 4.3 Failure‐Inducing Stressors
  • 4.4 Common Test Types
  • 4.4.1 Temperature Cycling
  • 4.4.2 Temperature‐Humidity‐Bias Testing
  • 4.4.3 Electrical Connection
  • 4.4.4 Corrosion Tests
  • 4.4.5 Power Cycling
  • 4.4.6 Electrical Loads
  • 4.4.7 Mechanical Bending
  • 4.4.8 Random and Sinusoidal Vibration
  • 4.4.9 Mechanical Shock
  • 4.4.10 ALT Testing
  • 4.4.11 Highly Accelerated Life Testing (HALT)
  • 4.4.12 EMC Testing Dos and Don'ts
  • 4.5 Test Plan Development
  • 4.5.1 The Process
  • 4.5.2 Failure Analysis
  • 4.5.3 Screening Tests
  • 4.5.4 Case Study One
  • 4.5.5 Case Study Two
  • 4.5.6 Case Study Three
  • References
  • Chapter 5 Design for Manufacturability
  • 5.1 Introduction
  • 5.2 Overview of Industry Standard Organizations
  • 5.3 Overview of DfM Processes
  • 5.3.1 The DfM Process
  • 5.4 Component Topics
  • 5.4.1 Part Selection
  • 5.4.2 Moisture Sensitivity Level (MSL)
  • 5.4.3 Temperature Sensitivity Level (TSL)
  • 5.4.4 ESD
  • 5.4.5 Derating
  • 5.4.6 Ceramic Capacitor Cracks
  • 5.4.7 Life Expectancies
  • 5.4.8 Aluminum Electrolytic Capacitors
  • 5.4.9 Resistors
  • 5.4.10 Tin Whiskers
  • 5.4.11 Integrated Circuits
  • 5.5 Printed Circuit Board Topics
  • 5.5.1 Laminate Selection
  • 5.5.2 Surface Finish
  • 5.5.3 Discussion of Different Surface Finishes
  • 5.5.4 Stackup
  • 5.5.5 Plated Through‐Holes
  • 5.5.6 Conductive Anodic Filament (CAF) Formation
  • 5.5.7 Copper Weight
  • 5.5.8 Pad Geometries
  • 5.5.9 Trace and Space Separation
  • 5.5.10 Non‐Functional Pads
  • 5.5.11 Shipping and Handling
  • 5.5.12 Cleanliness and Contamination
  • 5.6 Process Materials
  • 5.6.1 Solder
  • 5.6.2 Solder Paste
  • 5.6.3 Flux
  • 5.6.4 Stencils
  • 5.6.5 Conformal Coating
  • 5.6.6 Potting
  • 5.6.7 Underfill
  • 5.6.8 Cleaning Materials
  • 5.6.9 Adhesives
  • 5.7 Summary: Implementing DfM
  • References.
  • Chapter 6 Design for Sustainability
  • 6.1 Introduction
  • 6.2 Obsolescence Management
  • 6.2.1 Obsolescence‐Resolution Techniques
  • 6.2.1.1 Industry Standards
  • 6.2.1.2 Asset Security
  • 6.3 Long‐Term Storage
  • 6.4 Long‐Term Reliability Issues
  • 6.5 Counterfeit Prevention and Detection Strategies
  • 6.6 Supplier Selection
  • 6.6.1 Selecting a Printed Circuit Board Fabricator
  • 6.6.2 Auditing a Printed Circuit Board Fabricator
  • 6.6.2.1 Selecting a Contract Manufacturer
  • 6.6.2.2 Auditing a Contract Manufacturer
  • 6.6.2.3 Summary
  • References
  • Chapter 7 Root Cause Problem‐Solving, Failure Analysis, and Continual Improvement Techniques
  • 7.1 Introduction
  • 7.1.1 Continual Improvement
  • 7.1.2 Problem‐Solving
  • 7.1.3 Identifying Problems and Improvement Opportunities
  • 7.1.4 Overview of Industry Standard Organizations
  • 7.2 Root Cause Failure Analysis Methodology
  • 7.2.1 Strategies for Selecting an Approach
  • 7.2.2 The 5 Whys Approach
  • 7.2.3 The Eight Disciplines (8D)
  • 7.2.4 Shainin Red X: Diagnostic Journey
  • 7.2.5 Six Sigma
  • 7.2.6 Physics of Failure
  • 7.3 Failure Reporting, Analysis, and Corrective Action System (FRACAS)
  • 7.4 Failure Analysis
  • 7.4.1 Failure Analysis Techniques
  • 7.4.1.1 Visual Inspection
  • 7.4.1.2 Electrical Characterization
  • 7.4.1.3 Scanning Acoustic Microscopy
  • 7.4.1.4 X‐Ray Microscopy
  • 7.4.1.5 Thermal Imaging
  • 7.4.1.6 SQUID Microscopy
  • 7.4.1.7 Decapsulation
  • 7.4.1.8 Cross‐Sectioning
  • 7.4.1.9 Scanning Electron Microscope / Energy Dispersive X‐ray Spectroscopy (SEM/EDX)
  • 7.4.1.10 Surface/Depth Profiling Techniques: Secondary Ion Mass Spectroscopy (SIMS), Auger
  • 7.4.1.11 Focused Ion Beam (FIB)
  • 7.4.1.12 Mechanical Testing: Wire Pull, Wire Shear, Solder Ball Shear, Die Shear
  • 7.4.1.13 Fourier Transform Infra‐Red Spectroscopy FTIR
  • 7.4.1.14 Ion Chromatography.
  • 7.4.1.15 Differential Scanning Calorimetry (DSC)
  • 7.4.1.16 Thermomechanical Analysis / Dynamic Mechanical Analysis (DMA/TMA)
  • 7.4.1.17 Digital Image Correlation (DIC)
  • 7.4.1.18 Other Simple Failure Analysis Tools
  • 7.4.2 Failure Verification
  • 7.4.3 Corrective Action
  • 7.4.4 Closing the Failure Report
  • 7.5 Continuing Education and Improvement Activities
  • 7.6 Summary: Implementing Root Cause Methodology
  • References
  • Chapter 8 Conclusion to Design for Excellence: Bringing It All Together
  • 8.1 Design for Excellence (DfX) in Electronics Manufacturing
  • 8.2 Chapter 2: Establishing a Reliability Program
  • 8.3 Chapter : Design for Reliability (DfR)
  • 8.4 Chapter : Design for the Use Environment: Reliability Testing and Test Plan Development
  • 8.5 Chapter : Design for Manufacturability
  • 8.6 Chapter : Design for Sustainability
  • 8.7 Chapter : Root Cause Problem Solving, Failure Analysis, and Continual Improvement Techniques
  • Index
  • EULA.