An introduction to reservoir simulation using MATLAB/GNU Octave user guide for the MATLAB Reservoir Simulation Toolbox (MRST)

This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods. The reader will learn how to implement reservoir simulation models and computational algorithms in a robust and efficient manner. The book contains a...

Descripción completa

Detalles Bibliográficos
Otros Autores: Lie, Knut-Andreas, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press 2019.
Edición:1st ed
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009645331906719
Tabla de Contenidos:
  • Cover
  • Half-title
  • Title page
  • Copyright information
  • Contents
  • Preface
  • 1 Introduction
  • 1.1 Petroleum Recovery
  • 1.2 Reservoir Simulation
  • 1.3 Outline of the Book
  • 1.4 The First Encounter with MRST
  • Part I Geological Models and Grids
  • 2 Modeling Reservoir Rocks
  • 2.1 Formation of Sedimentary Rocks
  • 2.2 Creation of Crude Oil and Natural Gas
  • 2.3 Multiscale Modeling of Permeable Rocks
  • 2.3.1 Geological Characterization
  • 2.3.2 Representative Elementary Volumes
  • 2.3.3 Microscopic Models: The Pore Scale
  • 2.3.4 Mesoscopic Models
  • 2.4 Modeling Rock Properties
  • 2.4.1 Porosity
  • 2.4.2 Permeability
  • 2.4.3 Other Parameters
  • 2.5 Property Modeling in MRST
  • 2.5.1 Homogeneous Models
  • 2.5.2 Random and Lognormal Models
  • 2.5.3 The 10th SPE Comparative Solution Project: Model 2
  • 2.5.4 The Johansen Formation
  • 2.5.5 SAIGUP: Shallow-Marine Reservoirs
  • 3 Grids in Subsurface Modeling
  • 3.1 Structured Grids
  • 3.2 Unstructured Grids
  • 3.2.1 Delaunay Tessellation
  • 3.2.2 Voronoi Diagrams
  • 3.2.3 General Tessellations
  • 3.2.4 Using an External Mesh Generator
  • 3.3 Stratigraphic Grids
  • 3.3.1 Corner-Point Grids
  • 3.3.2 2.5D Unstructured Grids
  • 3.4 Grid Structure in MRST
  • 3.5 Examples of More Complex Grids
  • 3.5.1 SAIGUP: Model of a Shallow-Marine Reservoir
  • 3.5.2 Composite Grids
  • 3.5.3 Control-Point and Boundary Conformal Grids
  • 3.5.4 Multiblock Grids
  • Part II Single-Phase Flow
  • 4 Mathematical Models for Single-Phase Flow
  • 4.1 Fundamental Concept: Darcy's Law
  • 4.2 General Flow Equations for Single-Phase Flow
  • 4.3 Auxiliary Conditions and Equations
  • 4.3.1 Boundary and Initial Conditions
  • 4.3.2 Injection and Production Wells
  • 4.3.3 Field Lines and Time-of-Flight
  • 4.3.4 Tracers and Volume Partitions
  • 4.4 Basic Finite-Volume Discretizations
  • 4.4.1 Two-Point Flux-Approximation.
  • 4.4.2 Discrete div and grad Operators
  • 4.4.3 Time-of-Flight and Tracer
  • 5 Incompressible Solvers for Single-Phase Flow
  • 5.1 Basic Data Structures in a Simulation Model
  • 5.1.1 Fluid Properties
  • 5.1.2 Reservoir States
  • 5.1.3 Fluid Sources
  • 5.1.4 Boundary Conditions
  • 5.1.5 Wells
  • 5.2 Incompressible Two-Point Pressure Solver
  • 5.3 Upwind Solver for Time-of-Flight and Tracer
  • 5.4 Simulation Examples
  • 5.4.1 Quarter Five-Spot
  • 5.4.2 Boundary Conditions
  • 5.4.3 Structured versus Unstructured Stencils
  • 5.4.4 Using Peaceman Well Models
  • 6 Consistent Discretizations on Polyhedral Grids
  • 6.1 The TPFA Method Is Not Consistent
  • 6.2 The Mixed Finite-Element Method
  • 6.2.1 Continuous Formulation
  • 6.2.2 Discrete Formulation
  • 6.2.3 Hybrid Formulation
  • 6.3 Finite-Volume Methods on Mixed Hybrid Form
  • 6.4 The Mimetic Method
  • 6.5 Monotonicity
  • 6.6 Discussion
  • 7 Compressible Flow and Rapid Prototyping
  • 7.1 Implicit Discretization
  • 7.2 A Simulator Based on Automatic Differentiation
  • 7.2.1 Model Setup and Initial State
  • 7.2.2 Discrete Operators and Equations
  • 7.2.3 Well Model
  • 7.2.4 The Simulation Loop
  • 7.3 Pressure-Dependent Viscosity
  • 7.4 Non-Newtonian Fluid
  • 7.5 Thermal Effects
  • Part III Multiphase Flow
  • 8 Mathematical Models for Multiphase Flow
  • 8.1 New Physical Properties and Phenomena
  • 8.1.1 Saturation
  • 8.1.2 Wettability
  • 8.1.3 Capillary Pressure
  • 8.1.4 Relative Permeability
  • 8.2 Flow Equations for Multiphase Flow
  • 8.2.1 Single-Component Phases
  • 8.2.2 Multicomponent Phases
  • 8.2.3 Black-Oil Models
  • 8.3 Model Reformulations for Immiscible Two-Phase Flow
  • 8.3.1 Pressure Formulation
  • 8.3.2 Fractional-Flow Formulation in Phase Pressure
  • 8.3.3 Fractional-Flow Formulation in Global Pressure
  • 8.3.4 Fractional-Flow Formulation in Phase Potential
  • 8.3.5 Richards' Equation.
  • 8.4 The Buckley-Leverett Theory of 1D Displacements
  • 8.4.1 Horizontal Displacement
  • 8.4.2 Gravity Segregation
  • 8.4.3 Front Tracking: Semi-Analytical Solutions
  • 9 Discretizing Hyperbolic Transport Equations
  • 9.1 A New Solution Concept: Entropy-Weak Solutions
  • 9.2 Conservative Finite-Volume Methods
  • 9.3 Centered versus Upwind Schemes
  • 9.3.1 Centered Schemes
  • 9.3.2 Upwind or Godunov Schemes
  • 9.3.3 Comparison of Centered and Upwind Schemes
  • 9.3.4 Implicit Schemes
  • 9.4 Discretization on Unstructured Polyhedral Grids
  • 10 Solvers for Incompressible Immiscible Flow
  • 10.1 Fluid Objects for Multiphase Flow
  • 10.2 Sequential Solution Procedures
  • 10.2.1 Pressure Solvers
  • 10.2.2 Saturation Solvers
  • 10.3 Simulation Examples
  • 10.3.1 Buckley-Leverett Displacement
  • 10.3.2 Inverted Gravity Column
  • 10.3.3 Homogeneous Quarter Five-Spot
  • 10.3.4 Heterogeneous Quarter Five-Spot: Viscous Fingering
  • 10.3.5 Buoyant Migration of CO[sub(2)] in a Sloping Sandbox
  • 10.3.6 Water Coning and Gravity Override
  • 10.3.7 The Effect of Capillary Forces - Capillary Fringe
  • 10.3.8 Norne: Simplified Simulation of a Real-Field Model
  • 10.4 Numerical Errors
  • 10.4.1 Splitting Errors
  • 10.4.2 Grid Orientation Errors
  • 11 Compressible Multiphase Flow
  • 11.1 Industry-Standard Simulation
  • 11.2 Two-Phase Flow without Mass Transfer
  • 11.3 Three-Phase Relative Permeabilities
  • 11.3.1 Relative Permeability Models from ECLIPSE 100
  • 11.3.2 Evaluating Relative Permeabilities in MRST
  • 11.3.3 The SPE 1, SPE 3, and SPE 9 Benchmark Cases
  • 11.3.4 A Simple Three-Phase Simulator
  • 11.4 PVT Behavior of Petroleum Fluids
  • 11.4.1 Phase Diagrams
  • 11.4.2 Reservoir Types and Their Phase Behavior during Recovery
  • 11.4.3 PVT and Fluid Properties in Black-Oil Models
  • 11.5 Phase Behavior in ECLIPSE Input Decks
  • 11.6 The Black-Oil Equations.
  • 11.6.1 The Water Component
  • 11.6.2 The Oil Component
  • 11.6.3 The Gas Component
  • 11.6.4 Appearance and Disappearance of Phases
  • 11.7 Well Models
  • 11.7.1 Inflow-Performance Relationships
  • 11.7.2 Multisegment Wells
  • 11.8 Black-Oil Simulation with MRST
  • 11.8.1 Simulating the SPE 1 Benchmark Case
  • 11.8.2 Comparison against a Commercial Simulator
  • 11.8.3 Limitations and Potential Pitfalls
  • 12 The AD-OO Framework for Reservoir Simulation
  • 12.1 Overview of the Simulator Framework
  • 12.2 Model Hierarchy
  • 12.2.1 PhysicalModel - Generic Physical Models
  • 12.2.2 ReservoirModel - Basic Reservoir Models
  • 12.2.3 Black-Oil Models
  • 12.2.4 Models of Wells and Production Facilities
  • 12.3 Solving the Discrete Model Equations
  • 12.3.1 Assembly of Linearized Systems
  • 12.3.2 Nonlinear Solvers
  • 12.3.3 Selection of Time-Steps
  • 12.3.4 Linear Solvers
  • 12.4 Simulation Examples
  • 12.4.1 Depletion of a Closed/Open Compartment
  • 12.4.2 An Undersaturated Sector Model
  • 12.4.3 SPE 1 Instrumented with Inflow Valves
  • 12.4.4 The SPE 9 Benchmark Case
  • 12.5 Improving Convergence and Reducing Runtime
  • Part IV Reservoir Engineering Workflows
  • 13 Flow Diagnostics
  • 13.1 Flow Patterns and Volumetric Connections
  • 13.1.1 Volumetric Partitions
  • 13.1.2 Time-of-Flight Per Partition Region: Improved Accuracy
  • 13.1.3 Well Allocation Factors
  • 13.2 Measures of Dynamic Heterogeneity
  • 13.2.1 Flow and Storage Capacity
  • 13.2.2 Lorenz Coefficient and Sweep Efficiency
  • 13.3 Residence-Time Distributions
  • 13.4 Case Studies
  • 13.4.1 Tarbert Formation: Volumetric Connections
  • 13.4.2 Heterogeneity and Optimized Well Placement
  • 13.5 Interactive Flow Diagnostics Tools
  • 13.5.1 Synthetic 2D Example: Improving Areal Sweep
  • 13.5.2 SAIGUP: Flow Patterns and Volumetric Connections
  • 14 Grid Coarsening
  • 14.1 Grid Partitions.
  • 14.1.1 Uniform Partitions
  • 14.1.2 Connected Partitions
  • 14.1.3 Composite Partitions
  • 14.2 Coarse Grid Representation in MRST
  • 14.2.1 Subdivision of Coarse Faces
  • 14.3 Partitioning Stratigraphic Grids
  • 14.3.1 The Johansen Aquifer
  • 14.3.2 The SAIGUP Model
  • 14.3.3 Near Well Refinement for CaseB4
  • 14.4 More Advanced Coarsening Methods
  • 14.5 A General Framework for Agglomerating Cells
  • 14.5.1 Creating Initial Partitions
  • 14.5.2 Connectivity Checks and Repair Algorithms
  • 14.5.3 Indicator Functions
  • 14.5.4 Merge Blocks
  • 14.5.5 Refine Blocks
  • 14.5.6 Examples
  • 14.6 Multilevel Hierarchical Coarsening
  • 14.7 General Advice and Simple Guidelines
  • 15 Upscaling Petrophysical Properties
  • 15.1 Upscaling for Reservoir Simulation
  • 15.2 Upscaling Additive Properties
  • 15.3 Upscaling Absolute Permeability
  • 15.3.1 Averaging Methods
  • 15.3.2 Flow-Based Upscaling
  • 15.4 Upscaling Transmissibility
  • 15.5 Global and Local-Global Upscaling
  • 15.6 Upscaling Examples
  • 15.6.1 Flow Diagnostics Quality Measure
  • 15.6.2 A Model with Two Facies
  • 15.6.3 SPE 10 with Six Wells
  • 15.6.4 Complete Workflow Example
  • 15.6.5 General Advice and Simple Guidelines
  • Appendix The MATLAB Reservoir Simulation Toolbox
  • A.1 Getting Started with the Software
  • A.1.1 Core Functionality and Add-on Modules
  • A.1.2 Downloading and Installing
  • A.1.3 Exploring Functionality and Getting Help
  • A.1.4 Release Policy and Version Numbers
  • A.1.5 Software Requirements and Backward Compatibility
  • A.1.6 Terms of Usage
  • A.2 Public Data Sets and Test Cases
  • A.3 More About Modules and Advanced Functionality
  • A.3.1 Operating the Module System
  • A.3.2 What Characterizes a Module?
  • A.3.3 List of Modules
  • A.4 Rapid Prototyping Using MATLAB and MRST
  • A.5 Automatic Differentiation in MRST
  • References
  • Index
  • Usage of MRST Functions.