Hybrid electric vehicles principles and applications with practical perspectives

The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on t...

Descripción completa

Detalles Bibliográficos
Otros Autores: Mi, Chris, author (author), Masrur, M. Abul, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley 2018.
Edición:Second edition
Colección:Automotive series (Wiley)
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631854506719
Tabla de Contenidos:
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • About the Authors
  • Preface To the First Edition
  • PrefaceTo the Second Edition
  • Series Preface
  • Chapter 1 Introduction
  • 1.1 Sustainable Transportation
  • 1.1.1 Population, Energy, and Transportation
  • 1.1.2 Environment
  • 1.1.3 Economic Growth
  • 1.1.4 New Fuel Economy Requirement
  • 1.2 A Brief History of HEVs
  • 1.3 Why EVs Emerged and Failed in the 1990s, and What We Can Learn
  • 1.4 Architectures of HEVs
  • 1.4.1 Series HEVs
  • 1.4.2 Parallel HEVs
  • 1.4.3 Series-Parallel HEVs
  • 1.4.4 Complex HEVs
  • 1.4.5 Diesel and other Hybrids
  • 1.4.6 Other Approaches to Vehicle Hybridization
  • 1.4.7 Hybridization Ratio
  • 1.5 Interdisciplinary Nature of HEVs
  • 1.6 State of the Art of HEVs
  • 1.6.1 Toyota Prius
  • 1.6.2 The Honda Civic
  • 1.6.3 The Ford Escape
  • 1.6.4 The Two-Mode Hybrid
  • 1.7 Challenges and Key Technology of HEVs
  • 1.8 The Invisible Hand-Government Support
  • 1.9 Latest Development in EV and HEV, China's Surge  in EV Sales
  • References
  • Chapter 2 Concept of Hybridization of the Automobile
  • 2.1 Vehicle Basics
  • 2.1.1 Constituents of a Conventional Vehicle
  • 2.1.2 Vehicle and Propulsion Load
  • 2.1.3 Drive Cycles and Drive Terrain
  • 2.2 Basics of the EV
  • 2.2.1 Why EV?
  • 2.2.2 Constituents of an EV
  • 2.2.3 Vehicle and Propulsion Loads
  • 2.3 Basics of the HEV
  • 2.3.1 Why HEV?
  • 2.3.2 Constituents of an HEV
  • 2.4 Basics of Plug-In Hybrid Electric Vehicle (PHEV)
  • 2.4.1 Why PHEV?
  • 2.4.2 Constituents of a PHEV
  • 2.4.3 Comparison of HEV and PHEV
  • 2.5 Basics of Fuel Cell Vehicles (FCVs)
  • 2.5.1 Why FCV?
  • 2.5.2 Constituents of a FCV
  • 2.5.3 Some Issues Related to Fuel Cells
  • Reference
  • Chapter 3 HEV Fundamentals
  • 3.1 Introduction
  • 3.2 Vehicle Model
  • 3.3 Vehicle Performance
  • 3.4 EV Powertrain Component Sizing
  • 3.5 Series Hybrid Vehicle.
  • 3.6 Parallel Hybrid Vehicle
  • 3.6.1 Electrically Peaking Hybrid Concept
  • 3.6.2 ICE Characteristics
  • 3.6.3 Gradability Requirement
  • 3.6.4 Selection of Gear Ratio from ICE to Wheel
  • 3.7 Wheel Slip Dynamics
  • References
  • Chapter 4 Advanced HEV Architectures and Dynamics of HEV Powertrain
  • 4.1 Principle of Planetary Gears
  • 4.2 Toyota Prius and Ford Escape Hybrid Powertrain
  • 4.3 GM Two-Mode Hybrid Transmission
  • 4.3.1 Operating Principle of the Two-Mode Powertrain
  • 4.3.2 Mode 0: Vehicle Launch and Backup
  • 4.3.3 Mode 1: Low Range
  • 4.3.4 Mode 2: High Range
  • 4.3.5 Mode 3: Regenerative Braking
  • 4.3.6 Transition between Modes 0, 1, 2, and 3
  • 4.4 Dual-Clutch Hybrid Transmissions
  • 4.4.1 Conventional DCT Technology
  • 4.4.2 Gear Shift Schedule
  • 4.4.3 DCT-Based Hybrid Powertrain
  • 4.4.4 Operation of DCT-Based Hybrid Powertrain
  • 4.4.4.1 Motor-Alone Mode
  • 4.4.4.2 Combined Mode
  • 4.4.4.3 Engine-Alone Mode
  • 4.4.4.4 Regenerative Braking Mode
  • 4.4.4.5 Power Split Mode
  • 4.4.4.6 Standstill Charge Mode
  • 4.4.4.7 Series Hybrid Mode
  • 4.5 Hybrid Transmission Proposed by Zhang et al.
  • 4.5.1 Motor-Alone Mode
  • 4.5.2 Combined Power Mode
  • 4.5.3 Engine-Alone Mode
  • 4.5.4 Electric CVT Mode
  • 4.5.5 Energy Recovery Mode
  • 4.5.6 Standstill Mode
  • 4.6 Renault IVT Hybrid Transmission
  • 4.7 Timken Two-Mode Hybrid Transmission
  • 4.7.1 Mode 0: Launch and Reverse
  • 4.7.2 Mode 1: Low-Speed Operation
  • 4.7.3 Mode 2: High-Speed Operation
  • 4.7.4 Mode 4: Series Operating Mode
  • 4.7.5 Mode Transition
  • 4.8 Tsai's Hybrid Transmission
  • 4.9 Hybrid Transmission with Both Speed and Torque Coupling Mechanism
  • 4.10 Toyota Highlander and Lexus Hybrid, E-Four-Wheel Drive
  • 4.11 CAMRY Hybrid
  • 4.12 Chevy Volt Powertrain
  • 4.13 Non-Ideal Gears in the Planetary System
  • 4.14 Dynamics of the Transmission
  • 4.15 Conclusions.
  • References
  • Chapter 5 Plug-In Hybrid Electric Vehicles
  • 5.1 Introduction to PHEVs
  • 5.1.1 PHEVs and EREVs
  • 5.1.2 Blended PHEVs
  • 5.1.3 Why PHEV?
  • 5.1.4 Electricity for PHEV Use
  • 5.2 PHEV Architectures
  • 5.3 Equivalent Electric Range of Blended PHEVs
  • 5.4 Fuel Economy of PHEVs
  • 5.4.1 Well‐to‐Wheel Efficiency
  • 5.4.2 PHEV Fuel Economy
  • 5.4.3 Utility Factor
  • 5.5 Power Management of PHEVs
  • 5.6 PHEV Design and Component Sizing
  • 5.7 Component Sizing of EREVs
  • 5.8 Component Sizing of Blended PHEVs
  • 5.9 HEV to PHEV Conversions
  • 5.9.1 Replacing the Existing Battery Pack
  • 5.9.2 Adding an Extra Battery Pack
  • 5.9.3 Converting Conventional Vehicles to PHEVs
  • 5.10 Other Topics on PHEVs
  • 5.10.1 End-of-Life Battery for Electric Power Grid Support
  • 5.10.2 Cold Start Emissions Reduction in PHEVs
  • 5.10.3 Cold Weather/Hot Weather Performance Enhancement in PHEVs
  • 5.10.4 PHEV Maintenance
  • 5.10.5 Safety of PHEVs
  • 5.11 Vehicle-to-Grid Technology
  • 5.11.1 PHEV Battery Charging
  • 5.11.2 Impact of G2V
  • 5.11.3 The Concept of V2G
  • 5.11.4 Advantages of V2G
  • 5.11.5 Case Studies of V2G
  • 5.12 Conclusion
  • References
  • Chapter 6 Special Hybrid Vehicles
  • 6.1 Hydraulic Hybrid Vehicles
  • 6.1.1 Regenerative Braking in HHVs
  • 6.2 Off-Road HEVs
  • 6.2.1 Hybrid Excavators
  • 6.2.2 Hybrid Excavator Design Considerations
  • 6.3 Diesel HEVs
  • 6.4 Electric or Hybrid Ships, Aircraft, and Locomotives
  • 6.4.1 Ships
  • 6.4.2 Aircraft
  • 6.4.3 Locomotives
  • 6.5 Other Industrial Utility Application Vehicles
  • References
  • Further Reading
  • Chapter 7 HEV Applications for Military Vehicles
  • 7.1 Why HEVs Can Be Beneficial for Military Applications
  • 7.2 Ground Vehicle Applications
  • 7.2.1 Architecture - Series, Parallel, Complex
  • 7.2.2 Vehicles That Are of Most Benefit
  • 7.3 Non-Ground-Vehicle Military Applications.
  • 7.3.1 Electromagnetic Launchers
  • 7.3.2 Hybrid-Powered Ships
  • 7.3.3 Aircraft Applications
  • 7.3.4 Dismounted Soldier Applications
  • 7.4 Ruggedness Issues
  • References
  • Further Reading
  • Chapter 8 Diagnostics, Prognostics, Reliability, EMC, and Other Topics Related to HEVs
  • 8.1 Diagnostics and Prognostics in HEVs and EVs
  • 8.1.1 Onboard Diagnostics
  • 8.1.2 Prognostics Issues
  • 8.2 Reliability of HEVs
  • 8.2.1 Analyzing the Reliability of HEV Architectures
  • 8.2.2 Reliability and Graceful Degradation
  • 8.2.3 Software Reliability Issues
  • 8.3 Electromagnetic Compatibility (EMC) Issues
  • 8.4 Noise Vibration Harshness (NVH), Electromechanical, and Other Issues
  • 8.5 End-of-Life Issues
  • References
  • Further Reading
  • Chapter 9 Power Electronics in HEVs
  • 9.1 Introduction
  • 9.2 Principles of Power Electronics
  • 9.3 Rectifiers Used in HEVs
  • 9.3.1 Ideal Rectifier
  • 9.3.2 Practical Rectifier
  • 9.3.3 Single-Phase Rectifier
  • 9.3.4 Voltage Ripple
  • 9.4 Buck Converter Used in HEVs
  • 9.4.1 Operating Principle
  • 9.4.2 Nonlinear Model
  • 9.5 Non-Isolated Bidirectional DC-DC Converter
  • 9.5.1 Operating Principle
  • 9.5.2 Maintaining Constant Torque Range and Power Capability
  • 9.5.3 Reducing Current Ripple in the Battery
  • 9.5.4 Regenerative Braking
  • 9.6 Voltage Source Inverter
  • 9.7 Current Source Inverter
  • 9.8 Isolated Bidirectional DC-DC Converter
  • 9.8.1 Basic Principle and Steady State Operations
  • 9.8.1.1 Heavy Load Conditions
  • 9.8.1.2 Light Load Condition
  • 9.8.1.3 Output Voltage
  • 9.8.1.4 Output Power
  • 9.8.2 Voltage Ripple
  • 9.9 PWM Rectifier in HEVs
  • 9.9.1 Rectifier Operation of Inverter
  • 9.10 EV and PHEV Battery Chargers
  • 9.10.1 Forward/Flyback Converters
  • 9.10.2 Half-Bridge DC-DC Converter
  • 9.10.3 Full-Bridge DC-DC Converter
  • 9.10.4 Power Factor Correction Stage.
  • 9.10.4.1 Decreasing Impact on the Grid
  • 9.10.4.2 Decreasing the Impact on the Switches
  • 9.10.5 Bidirectional Battery Chargers
  • 9.10.6 Other Charger Topologies
  • 9.10.7 Contactless Charging
  • 9.10.8 Wireless Charging
  • 9.11 Modeling and Simulation of HEV Power Electronics
  • 9.11.1 Device-Level Simulation
  • 9.11.2 System-Level Model
  • 9.12 Emerging Power Electronics Devices
  • 9.13 Circuit Packaging
  • 9.14 Thermal Management of HEV Power Electronics
  • 9.15 Conclusions
  • References
  • 10 Electric Machines and Drives in HEVs
  • 10.1 Introduction
  • 10.2 Induction Motor Drives
  • 10.2.1 Principle of Induction Motors
  • 10.2.2 Equivalent Circuit of Induction Motor
  • 10.2.3 Speed Control of Induction Machine
  • 10.2.4 Variable Frequency, Variable Voltage Control of Induction Motors
  • 10.2.5 Efficiency and Losses of Induction Machine
  • 10.2.6 Additional Loss in Induction Motors Due to PWM Supply
  • 10.2.7 Field-Oriented Control of Induction Machine
  • 10.3 Permanent Magnet Motor Drives
  • 10.3.1 Basic Configuration of PM Motors
  • 10.3.2 Basic Principle and Operation of PM Motors
  • 10.3.3 Magnetic Circuit Analysis of IPM Motors
  • 10.3.3.1 Unsaturated Motor
  • 10.3.3.2 Saturated Motor
  • 10.3.3.3 Operation Under Load
  • 10.3.3.4 Flux Concentration
  • 10.3.4 Sizing of Magnets in PM Motors
  • 10.3.4.1 Input Power
  • 10.3.4.2 Direct-Axis Armature Reaction Factor
  • 10.3.4.3 Magnetic Usage Ratio and Flux Leakage Coefficient
  • 10.3.4.4 Maximum Armature Current
  • 10.3.4.5 Inner Power Angle
  • 10.3.5 Eddy Current Losses in the Magnets of PM Machines
  • 10.4 Switched Reluctance Motors
  • 10.5 Doubly Salient Permanent Magnet Machines
  • 10.6 Design and Sizing of Traction Motors
  • 10.6.1 Selection of A and B
  • 10.6.2 Speed Rating of the Traction Motor
  • 10.6.3 Determination of the Inner Power.
  • 10.7 Thermal Analysis and Modeling of Traction Motors.