The internet of things applications to the smart grid and building automation

An all-in-one reference to the major Home Area Networking, Building Automation and AMI protocols, including 802.15.4 over radio or PLC, 6LowPAN/RPL, ZigBee 1.0 and Smart Energy 2.0, Zwave, LON, BACNet, KNX, ModBus, mBus, C.12 and DLMS/COSEM, and the new ETSI M2M system level standard. In-depth cover...

Descripción completa

Detalles Bibliográficos
Autor principal: Hersent, Olivier (-)
Otros Autores: Boswarthick, David, Elloumi, Omar
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, NJ : Wiley 2012.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631849406719
Tabla de Contenidos:
  • List of Acronyms xv
  • Introduction xxiii
  • Part I M2M AREA NETWORK PHYSICAL LAYERS
  • 1 IEEE 802.15.4 3
  • 1.1 The IEEE 802 Committee Family of Protocols 3
  • 1.2 The Physical Layer 3
  • 1.2.1 Interferences with Other Technologies 5
  • 1.2.2 Choice of a 802.15.4 Communication Channel, Energy Detection, Link Quality Information 7
  • 1.2.3 Sending a Data Frame 8
  • 1.3 The Media-Access Control Layer 8
  • 1.3.1 802.15.4 Reduced Function and Full Function Devices, Coordinators, and the PAN Coordinator 9
  • 1.3.2 Association 12
  • 1.3.3 802.15.4 Addresses 13
  • 1.3.4 802.15.4 Frame Format 13
  • 1.3.5 Security 14
  • 1.4 Uses of 802.15.4 16
  • 1.5 The Future of 802.15.4: 802.15.4e and 802.15.4g 17
  • 1.5.1 802.15.4e 17
  • 1.5.2 802.15.4g 21
  • 2 Powerline Communication for M2M Applications 23
  • 2.1 Overview of PLC Technologies 23
  • 2.2 PLC Landscape 23
  • 2.2.1 The Historical Period (1950 / 2000) 24
  • 2.2.2 After Year 2000: The Maturity of PLC 24
  • 2.3 Powerline Communication: A Constrained Media 27
  • 2.3.1 Powerline is a Difficult Channel 27
  • 2.3.2 Regulation Limitations 27
  • 2.3.3 Power Consumption 32
  • 2.3.4 Lossy Network 33
  • 2.3.5 Powerline is a Shared Media and Coexistence is not an Optional / Feature 35
  • 2.4 The Ideal PLC System for M2M 37
  • 2.4.1 Openness and Availability 38
  • 2.4.2 Range 38
  • 2.4.3 Power Consumption 38
  • 2.4.4 Data Rate 39
  • 2.4.5 Robustness 39
  • 2.4.6 EMC Regulatory Compliance 40
  • 2.4.7 Coexistence 40
  • 2.4.8 Security 40
  • 2.4.9 Latency 40
  • 2.4.10 Interoperability with M2M Wireless Services 40
  • 2.5 Conclusion 40
  • References 41
  • Part II LEGACY M2M PROTOCOLS FOR SENSOR NETWORKS, / BUILDING AUTOMATION AND HOME AUTOMATION
  • 3 The BACnetTM Protocol 45
  • 3.1 Standardization 45
  • 3.1.1 United States 46
  • 3.1.2 Europe 46
  • 3.1.3 Interworking 46
  • 3.2 Technology 46
  • 3.2.1 Physical Layer 47
  • 3.2.2 Link Layer 47
  • 3.2.3 Network Layer 47
  • 3.2.4 Transport and Session Layers 49
  • 3.2.5 Presentation and Application Layers 49.
  • 3.3 BACnet Security 55
  • 3.4 BACnet Over Web Services (Annex N, Annex H6) 55
  • 3.4.1 The Generic WS Model 56
  • 3.4.2 BACnet/WS Services 58
  • 3.4.3 The Web Services Profile for BACnet Objects 59
  • 3.4.4 Future Improvements 59
  • 4 The LonWorks R Control Networking Platform 61
  • 4.1 Standardization 61
  • 4.1.1 United States of America 61
  • 4.1.2 Europe 62
  • 4.1.3 China 62
  • 4.2 Technology 62
  • 4.2.1 Physical Layer 63
  • 4.2.2 Link Layer 64
  • 4.2.3 Network Layer 65
  • 4.2.4 Transport Layer 66
  • 4.2.5 Session Layer 67
  • 4.2.6 Presentation Layer 67
  • 4.2.7 Application Layer 71
  • 4.3 Web Services Interface for LonWorks Networks: Echelon SmartServer 72
  • 4.4 A REST Interface for LonWorks 73
  • 4.4.1 LonBridge REST Transactions 74
  • 4.4.2 Requests 74
  • 4.4.3 Responses 75
  • 4.4.4 LonBridge REST Resources 75
  • 5 ModBus 79
  • 5.1 Introduction 79
  • 5.2 ModBus Standardization 80
  • 5.3 ModBus Message Framing and Transmission Modes 80
  • 5.4 ModBus/TCP 81
  • 6 KNX 83
  • 6.1 The Konnex/KNX Association 83
  • 6.2 Standardization 83
  • 6.3 KNX Technology Overview 84
  • 6.3.1 Physical Layer 84
  • 6.3.2 Data Link and Routing Layers, Addressing 87
  • 6.3.3 Transport Layer 89
  • 6.3.4 Application Layer 89
  • 6.3.5 KNX Devices, Functional Blocks and Interworking 89
  • 6.4 Device Configuration 92
  • 7 ZigBee 93
  • 7.1 Development of the Standard 93
  • 7.2 ZigBee Architecture 94
  • 7.2.1 ZigBee and 802.15.4 94
  • 7.2.2 ZigBee Protocol Layers 94
  • 7.2.3 ZigBee Node Types 96
  • 7.3 Association 96
  • 7.3.1 Forming a Network 96
  • 7.3.2 Joining a Parent Node in a Network Using 802.15.4 Association 97
  • 7.3.3 Using NWK Rejoin 99
  • 7.4 The ZigBee Network Layer 99
  • 7.4.1 Short-Address Allocation 99
  • 7.4.2 Network Layer Frame Format 100
  • 7.4.3 Packet Forwarding 101
  • 7.4.4 Routing Support Primitives 101
  • 7.4.5 Routing Algorithms 102
  • 7.5 The ZigBee APS Layer 105
  • 7.5.1 Endpoints, Descriptors 106
  • 7.5.2 The APS Frame 106
  • 7.6 The ZigBee Device Object (ZDO) and the ZigBee Device Profile (ZDP) 109.
  • 7.6.1 ZDP Device and Service Discovery Services (Mandatory) 109
  • 7.6.2 ZDP Network Management Services (Mandatory) 110
  • 7.6.3 ZDP Binding Management Services (Optional) 111
  • 7.6.4 Group Management 111
  • 7.7 ZigBee Security 111
  • 7.7.1 ZigBee and 802.15.4 Security 111
  • 7.7.2 Key Types 113
  • 7.7.3 The Trust Center 114
  • 7.7.4 The ZDO Permissions Table 116
  • 7.8 The ZigBee Cluster Library (ZCL) 116
  • 7.8.1 Cluster 116
  • 7.8.2 Attributes 117
  • 7.8.3 Commands 117
  • 7.8.4 ZCL Frame 117
  • 7.9 ZigBee Application Profiles 119
  • 7.9.1 The Home Automation (HA) Application Profile 119
  • 7.9.2 ZigBee Smart Energy 1.0 (ZSE or AMI) 122
  • 7.10 The ZigBee Gateway Specification for Network Devices 129
  • 7.10.1 The ZGD 130
  • 7.10.2 GRIP Binding 131
  • 7.10.3 SOAP Binding 132
  • 7.10.4 REST Binding 132
  • 7.10.5 Example IPHA / ZGD Interaction Using the REST Binding 134
  • 8 Z-Wave 139
  • 8.1 History and Management of the Protocol 139
  • 8.2 The Z-Wave Protocol 140
  • 8.2.1 Overview 140
  • 8.2.2 Z-Wave Node Types 140
  • 8.2.3 RF and MAC Layers 142
  • 8.2.4 Transfer Layer 143
  • 8.2.5 Routing Layer 145
  • 8.2.6 Application Layer 148
  • Part III LEGACY M2M PROTOCOLS FOR UTILITY METERING / 9 M-Bus and Wireless M-Bus 155
  • 9.1 Development of the Standard 155
  • 9.2 M-Bus Architecture 156
  • 9.2.1 Physical Layer 156
  • 9.2.2 Link Layer 156
  • 9.2.3 Network Layer 157
  • 9.2.4 Application Layer 158
  • 9.3 Wireless M-Bus 160
  • 9.3.1 Physical Layer 160
  • 9.3.2 Data-Link Layer 162
  • 9.3.3 Application Layer 162
  • 9.3.4 Security 163
  • 10 The ANSI C12 Suite 165
  • 10.1 Introduction 165
  • 10.2 C12.19: The C12 Data Model 166
  • 10.2.1 The Read and Write Minimum Services 167
  • 10.2.2 Some Remarkable C12.19 Tables 167
  • 10.3 C12.18: Basic Point-to-Point Communication Over an Optical Port 168
  • 10.4 C12.21: An Extension of C12.18 for Modem Communication 169
  • 10.4.1 Interactions with the Data-Link Layer 170
  • 10.4.2 Modifications and Additions to C12.19 Tables 171
  • 10.5 C12.22: C12.19 Tables Transport Over Any Networking Communication / System 171.
  • 10.5.1 Reference Topology and Network Elements 171
  • 10.5.2 C12.22 Node to C12.22 Network Communications 173
  • 10.5.3 C12.22 Device to C12.22 Communication Module Interface 174
  • 10.5.4 C12.19 Updates 176
  • 10.6 Other Parts of ANSI C12 Protocol Suite 176
  • 10.7 RFC 6142: C12.22 Transport Over an IP Network 176
  • 10.8 REST-Based Interfaces to C12.19 177
  • 11 DLMS/COSEM 179
  • 11.1 DLMS Standardization 179
  • 11.1.1 The DLMS UA 179
  • 11.1.2 DLMS/COSEM, the Colored Books 179
  • 11.1.3 DLMS Standardization in IEC 180
  • 11.2 The COSEM Data Model 181
  • 11.3 The Object Identification System (OBIS) 182
  • 11.4 The DLMS/COSEM Interface Classes 184
  • 11.4.1 Data-Storage ICs 185
  • 11.4.2 Association ICs 185
  • 11.4.3 Time- and Event-Bound ICs 186
  • 11.4.4 Communication Setup Channel Objects 186
  • 11.5 Accessing COSEM Interface Objects 186
  • 11.5.1 The Application Association Concept 186
  • 11.5.2 The DLMS/COSEM Communication Framework 187
  • 11.5.3 The Data Communication Services of COSEM Application Layer 189
  • 11.6 End-to-End Security in the DLMS/COSEM Approach 191
  • 11.6.1 Access Control Security 191
  • 11.6.2 Data-Transport Security 192
  • Part IV THE NEXT GENERATION: IP-BASED PROTOCOLS
  • 12 6LoWPAN and RPL 195
  • 12.1 Overview 195
  • 12.2 What is 6LoWPAN? 6LoWPAN and RPL Standardization 195
  • 12.3 Overview of the 6LoWPAN Adaptation Layer 196
  • 12.3.1 Mesh Addressing Header 197
  • 12.3.2 Fragment Header 198
  • 12.3.3 IPv6 Compression Header 198
  • 12.4 Context-Based Compression: IPHC 200
  • 12.5 RPL 202
  • 12.5.1 RPL Control Messages 204
  • 12.5.2 Construction of the DODAG and Upward Routes 204
  • 12.6 Downward Routes, Multicast Membership 206
  • 12.7 Packet Routing 207
  • 12.7.1 RPL Security 208
  • 13 ZigBee Smart Energy 2.0 209
  • 13.1 REST Overview 209
  • 13.1.1 Uniform Interfaces, REST Resources and Resource Identifiers 209
  • 13.1.2 REST Verbs 210
  • 13.1.3 Other REST Constraints, and What is REST After All? 211
  • 13.2 ZigBee SEP 2.0 Overview 212.
  • 13.2.1 ZigBee IP 213
  • 13.2.2 ZigBee SEP 2.0 Resources 214
  • 13.3 Function Sets and Device Types 217
  • 13.3.1 Base Function Set 218
  • 13.3.2 Group Enrollment 221
  • 13.3.3 Meter 223
  • 13.3.4 Pricing 223
  • 13.3.5 Demand Response and Load Control Function Set 224
  • 13.3.6 Distributed Energy Resources 227
  • 13.3.7 Plug-In Electric Vehicle 227
  • 13.3.8 Messaging 230
  • 13.3.9 Registration 231
  • 13.4 ZigBee SE 2.0 Security 232
  • 13.4.1 Certificates 232
  • 13.4.2 IP Level Security 232
  • 13.4.3 Application-Level Security 235
  • 14 The ETSI M2M Architecture 237
  • 14.1 Introduction to ETSI TC M2M 237
  • 14.2 System Architecture 238
  • 14.2.1 High-Level Architecture 238
  • 14.2.2 Reference Points 239
  • 14.2.3 Service Capabilities 240
  • 14.3 ETSI M2M SCL Resource Structure 242
  • 14.3.1 SCL Resources 244
  • 14.3.2 Application Resources 244
  • 14.3.3 Access Right Resources 248
  • 14.3.4 Container Resources 248
  • 14.3.5 Group Resources 250
  • 14.3.6 Subscription and Notification Channel Resources 251
  • 14.4 ETSI M2M Interactions Overview 252
  • 14.5 Security in the ETSI M2M Framework 252
  • 14.5.1 Key Management 252
  • 14.5.2 Access Lists 254
  • 14.6 Interworking with Machine Area Networks 255
  • 14.6.1 Mapping M2M Networks to ETSI M2M Resources 256
  • 14.6.2 Interworking with ZigBee 1.0 257
  • 14.6.3 Interworking with C.12 262
  • 14.6.4 Interworking with DLMS/COSEM 264
  • 14.7 Conclusion on ETSI M2M 266
  • Part V KEY APPLICATIONS OF THE INTERNET OF THINGS
  • 15 The Smart Grid 271
  • 15.1 Introduction 271
  • 15.2 The Marginal Cost of Electricity: Base and Peak Production 272
  • 15.3 Managing Demand: The Next Challenge of Electricity Operators . . . and / Why M2M Will Become a Key Technology 273
  • 15.4 Demand Response for Transmission System Operators (TSO) 274
  • 15.4.1 Grid-Balancing Authorities: The TSOs 274
  • 15.4.2 Power Shedding: Who Pays What? 276
  • 15.4.3 Automated Demand Response 277
  • 15.5 Case Study: RTE in France 277
  • 15.5.1 The Public-Network Stabilization and Balancing Mechanisms in France 277.
  • 15.5.2 The Bidding Mechanisms of the Tertiary Adjustment Reserve 281
  • 15.5.3 Who Pays for the Network-Balancing Costs? 283
  • 15.6 The Opportunity of Smart Distributed Energy Management 285
  • 15.6.1 Assessing the Potential of Residential and Small-Business Powerz Shedding (Heating/Cooling Control) 286
  • 15.6.2 Analysis of a Typical Home 287
  • 15.6.3 The Business Case 293
  • 15.7 Demand Response: The Big Picture 300
  • 15.7.1 From Network Balancing to Peak-Demand Suppression 300
  • 15.7.2 Demand Response Beyond Heating Systems 304
  • 15.8 Conclusion: The Business Case of Demand Response and Demand Shifting is a Key Driver for the Deployment of the Internet of Things 305
  • 16 Electric Vehicle Charging 307
  • 16.1 Charging Standards Overview 307
  • 16.1.1 IEC Standards Related to EV Charging 310
  • 16.1.2 SAE Standards 317
  • 16.1.3 J2293 318
  • 16.1.4 CAN / Bus 319
  • 16.1.5 J2847: The New “Recommended Practice” for High-Level / Communication Leveraging the ZigBee Smart Energy Profile 2.0 320
  • 16.2 Use Cases 321
  • 16.2.1 Basic Use Cases 321
  • 16.2.2 A More Complex Use Case: Thermal Preconditioning of the Car 323
  • 16.3 Conclusion 324
  • Appendix A Normal Aggregate Power Demand of a Set of Identical / Heating Systems with Hysteresis 327
  • Appendix B Effect of a Decrease of Tref. The Danger of Correlation 329
  • Appendix C Changing Tref without Introducing Correlation 331
  • C.1 Effect of an Increase of Tref 331
  • Appendix D Lower Consumption, A Side Benefit of Power Shedding 333
  • Index 337.