Advanced wireless networks technology and business models

Covering the status of wireless networks and their future potential as the industry prepares for 4G, this work adopts a logical approach, beginning each chapter with introductory material, before proceeding to more advanced topics and tools for system analysis.

Detalles Bibliográficos
Otros Autores: Glisic, Savo G., author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Chichester, West Sussex, United Kingdom : Wiley 2016.
Edición:Third edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631531406719
Tabla de Contenidos:
  • Preface xv
  • 1 Introduction: Generalized Model of Advanced Wireless Networks 1
  • 1.1 Network Model 3
  • 1.2 Network Connectivity 5
  • 1.3 Wireless Network Design with Small World Properties 7
  • 1.4 Frequency Channels Backup 11
  • 1.5 Generalized Network Model 13
  • 1.6 Routing Protocols Over s-Lattice Network 14
  • 1.7 Network Performance 16
  • 1.8 Node, Route, Topology, and Network Robustness 19
  • 1.9 Power Consumption 20
  • 1.10 Protocol Complexity 20
  • 1.11 Performance Evaluation 21
  • 1.12 Book Layout 27
  • Appendix A.1 33
  • References 34
  • 2 Adaptive Network Layer 35
  • 2.1 Graphs and Routing Protocols 35
  • 2.2 Graph Theory 54
  • 2.3 Routing with Topology Aggregation 56
  • References 60
  • 3 Mobility Management 65
  • 3.1 Cellular Networks 65
  • 3.2 Cellular Systems with Prioritized Handoff 89
  • 3.3 Cell Residing Time Distribution 100
  • 3.4 Mobility Prediction in Pico- and Micro-Cellular Networks 105
  • Appendix A.3 Distance Calculation in an Intermediate Cell 116
  • References 122
  • 4 Ad Hoc Networks 126
  • 4.1 Routing Protocols 126
  • 4.2 Hybrid Routing Protocol 146
  • 4.3 Scalable Routing Strategies 152
  • 4.4 Multipath Routing 160
  • 4.5 Clustering Protocols 162
  • 4.6 Cashing Schemes for Routing 175
  • 4.7 Distributed QoS Routing 181
  • References 190
  • 5 Sensor Networks 194
  • 5.1 Introduction 194
  • 5.2 Sensor Network Parameters 196
  • 5.3 Sensor Network Architecture 199
  • 5.4 Mobile Sensor Network Deployment 209
  • 5.5 Directed Diffusion 212
  • 5.6 Aggregation in Wireless Sensor Networks 216
  • 5.7 Boundary Estimation 220
  • 5.8 Optimal Transmission Radius in Sensor Networks 227
  • 5.9 Data Funneling 233
  • 5.10 Equivalent Transport Control Protocol in Sensor Networks 236
  • References 237
  • 6 Security 244
  • 6.1 Authentication 244
  • 6.2 Security Architecture 253
  • 6.3 Key Management 257
  • 6.4 Security in Ad Hoc Networks 261
  • 6.5 Security in Sensor Networks 268
  • References 269
  • 7 Network Economics 272
  • 7.1 Fundamentals of Network Economics 272.
  • 7.2 Wireless Network Microeconomics: Data Sponsoring 286
  • 7.3 Spectrum Pricing for Market Equilibrium 291
  • 7.4 Sequential Spectrum Sharing 300
  • 7.5 Data Plan Trading 308
  • References 315
  • 8 Multi-Hop Cellular Networks 318
  • 8.1 Modeling Multi-Hop Multi-Operator Multi-Technology Wireless Networks 318
  • 8.2 Technology Background 319
  • 8.3 System Model and Notation 321
  • 8.4 m3 Route Discovery Protocols 323
  • 8.5 Performance of m3 Route Discovery Protocols 327
  • 8.6 Protocol Complexity 329
  • 8.7 Traffic Offloading Incentives 330
  • 8.8 Performance Illustrations 335
  • References 344
  • 9 Cognitive Networks 346
  • 9.1 Technology Background 346
  • 9.2 Spectrum Auctions for Multi-hop Cognitive Networks 350
  • 9.3 Compound Auctioning in Multi-hop Cognitive Cellular Networks 363
  • References 388
  • 10 Stochastic Geometry 391
  • 10.1 Background Theory 391
  • References 398
  • 11 Heterogeneous Networks 402
  • 11.1 Preliminaries 402
  • 11.2 Self-Organized Small Cell Networks 404
  • 11.3 Dynamic Network Architecture 411
  • 11.4 Economics of Heterogeneous Networks 434
  • References 443
  • 12 Access Point Selection 446
  • 12.1 Background Technology 446
  • 12.2 Network Selection Game 449
  • 12.3 Joint Access Point Selection and Power Allocation 453
  • 12.4 Joint AP Selection and Beamforming Optimization 463
  • References 474
  • 13 Self-Organizing Networks 478
  • 13.1 Self-Organizing Network Optimization 478
  • 13.2 System Model 478
  • 13.3 Joint Optimization of Tilts and AP Association 481
  • References 484
  • 14 Complex Networks 486
  • 14.1 Evolution Towards Large-Scale Networks 486
  • 14.2 Network Characteristics 491
  • 14.3 Random Graphs 494
  • References 496
  • 15 Massive MIMO 499
  • 15.1 Linearly Precoded Multicellular Downlink System 499
  • 15.2 System Model 503
  • 15.3 Optimization for Perfect Channel State Information 505
  • 15.4 Robust Designs for WSRM Problem 509
  • Appendix A.15 519
  • Appendix B.15 519
  • References 521
  • 16 Network Optimization Theory 523.
  • 16.1 Introduction 523
  • 16.2 Layering as Optimization Decomposition 524
  • 16.3 Cross-Layer Optimization 533
  • 16.4 Optimization Problem Decomposition Methods 543
  • References 554
  • 17 Network Information Theory 557
  • 17.1 Capacity of Ad Hoc Networks 557
  • 17.2 Information Theory and Network Architectures 569
  • 17.3 Cooperative Transmission in Wireless Multihop Ad Hoc Networks 577
  • References 584
  • 18 Stability of Advanced Network Architectures 585
  • 18.1 Stability of Cooperative Cognitive Wireless Networks 585
  • 18.2 System Model 586
  • 18.4 Optimal Control Policy 592
  • 18.5 Achievable Rates 594
  • 18.6 Stabilizing Transmission Policies 598
  • References 605
  • 19 Multi-Operator Spectrum Sharing 607
  • 19.1 Business Models for Spectrum Sharing 607
  • 19.2 Spectrum Sharing in Multi-hop Networks 638
  • References 656
  • 20 Large Scale Networks and Mean Field Theory 659
  • 20.1 MFT for Large Heterogeneous Cellular Networks 659
  • 20.2 Large Scale Network Model Compression 664
  • 20.3 Mean Field Theory Model of Large Scale DTN Networks 668
  • 20.4 Mean Field Modeling of Adaptive Infection Recovery in Multicast DTN Networks 674
  • 20.5 Mean Field Theory for Scale-Free Random Networks 701
  • 20.6 Spectrum Sharing and MFT 709
  • 20.7 Modeling Dynamics of Complex System 711
  • Appendix A.20 Iterative Algorithm to Solve Systems of Nonlinear ODEs (DiNSE-Algorithm) 721
  • Appendix B.20 Infection Rate of Destinations for DNCM 722
  • Appendix C.20 Infection Rate for Basic Epidemic Routing 722
  • References 722
  • 21 mmWave Networks 726
  • 21.1 mmWave Technology in Subcellular Architecture 726
  • 21.2 Microeconomics of Dynamic mmWave Networks 737
  • References 747
  • 22 Cloud Computing in Wireless Networks 750
  • 22.1 Technology Background 750
  • 22.2 System Model 752
  • 22.3 System Optimization 756
  • 22.4 Dynamic Control Algorithm 758
  • 22.5 Achievable Rates 761
  • 22.6 Stabilizing Control Policies 763
  • References 769
  • 23 Wireless Networks and Matching Theory 771.
  • 23.1 Background Technology: Matching Markets 772
  • 23.2 Distributed Stable Matching in Multiple Operator Cellular Network with Traffic Offloading 776
  • 23.3 College Admissions Game Model for Cellular Networks with Traffic Offloading 779
  • 23.4 Many to Many Matching Games for Caching in Wireless Networks 783
  • 23.5 Many to One Matching with Externalities in Cellular Networks with Traffic Offloading 787
  • 23.6 Security in Matching of Device to Device Pairs in Cellular Networks 791
  • References 795
  • 24 Dynamic Wireless Network Infrastructure 797
  • 24.1 Infrastructure Sharing in Multi-Operator Cellular Networks 797
  • 24.2 User Provided Connectivity 802
  • 24.3 Network Virtualization 806
  • 24.4 Software Defined Networks 810
  • 24.5 SDN Security 816
  • References 819
  • Index 827.