Electric motors and drives fundamentals, types and applications

Electric Motors and Drives: Fundamentals, Types and Applications, Fifth Edition is intended primarily for non-specialist users or students of electric motors and drives, but many researchers and specialist industrialists have also acknowledged its value in providing a clear understanding of the fund...

Descripción completa

Detalles Bibliográficos
Otros Autores: Hughes, Austin, author (author), Drury, Bill, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Oxford, United Kingdom : Newnes, an imprint of Elsevier [2019].
Edición:Fifth edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631029606719
Tabla de Contenidos:
  • Front Cover
  • Electric Motors and Drives: Fundamentals, Types and Applications
  • Copyright
  • Contents
  • Preface
  • Chapter 1: Electric motors-The basics
  • 1.1. Introduction
  • 1.2. Producing rotation
  • 1.2.1. Magnetic field and magnetic flux
  • 1.2.2. Magnetic flux density
  • 1.2.3. Force on a conductor
  • 1.3. Magnetic circuits
  • 1.3.1. Magnetomotive force (m.m.f.)
  • 1.3.2. Electric circuit analogy
  • 1.3.3. The air-gap
  • 1.3.4. Reluctance and air-gap flux densities
  • 1.3.5. Saturation
  • 1.3.6. Magnetic circuits in motors
  • 1.4. Torque production
  • 1.4.1. Magnitude of torque
  • 1.4.2. The beauty of slotting
  • 1.5. Torque and motor volume
  • 1.5.1. Specific loadings
  • 1.5.2. Torque and rotor volume
  • 1.5.3. Output power-Importance of speed
  • 1.5.4. Power density (specific output power)
  • 1.6. Energy conversion-Motional e.m.f
  • 1.6.1. Elementary motor-Stationary conditions
  • 1.6.2. Power relationships-Conductor moving at constant speed
  • 1.7. Equivalent circuit
  • 1.7.1. Motoring and generating
  • 1.8. Constant voltage operation
  • 1.8.1. Behaviour with no mechanical load
  • 1.8.2. Behaviour with a mechanical load
  • 1.8.3. Relative magnitudes of V and E, and efficiency
  • 1.8.4. Analysis of primitive machine-Conclusions
  • 1.9. General properties of electric motors
  • 1.9.1. Operating temperature and cooling
  • 1.9.2. Torque per unit volume
  • 1.9.3. Power per unit volume and efficiency-Importance of speed
  • 1.9.4. Size effects-Specific torque and efficiency
  • 1.9.5. Rated voltage
  • 1.9.6. Short-term overload
  • 1.10. Review questions
  • Chapter 2: Power electronic converters for motor drives
  • 2.1. Introduction
  • 2.1.1. General arrangement of drive
  • 2.2. Voltage control-D.C. output from d.c. supply
  • 2.2.1. Switching control
  • 2.2.2. Transistor chopper
  • 2.2.3. Chopper with inductive load-Overvoltage protection.
  • 2.2.4. Boost converter
  • 2.3. D.C. from a.c.-Controlled rectification
  • 2.3.1. The thyristor
  • 2.3.2. Single pulse rectifier
  • 2.3.3. Single-phase fully-controlled converter-Output voltage and control
  • Resistive load
  • Inductive (motor) load
  • 2.3.4. Three-phase fully-controlled converter
  • 2.3.5. Output voltage range
  • 2.3.6. Firing circuits
  • 2.4. A.C. from d.c.-Inversion
  • 2.4.1. Single-phase inverter
  • 2.4.2. Output voltage control
  • Mode A
  • Mode B
  • Mode C
  • Mode D
  • 2.4.3. Three-phase inverter
  • 2.4.4. Multi-level inverter
  • 2.4.5. Braking
  • 2.4.6. Active front end
  • 2.5. A.C. from a.c.
  • 2.5.1. The cycloconverter
  • 2.5.2. The matrix converter
  • 2.6. Inverter switching devices
  • 2.6.1. Bipolar junction transistor (BJT)
  • 2.6.2. Metal oxide semiconductor field effect transistor (MOSFET)
  • 2.6.3. Insulated gate bipolar transistor (IGBT)
  • 2.7. Converter waveforms, acoustic noise, and cooling
  • 2.7.1. Cooling of switching devices-Thermal resistance
  • 2.7.2. Arrangement of heatsinks and forced-air cooling
  • 2.8. Review questions
  • Chapter 3: D.C. motors
  • 3.1. Introduction
  • 3.2. Torque production
  • 3.2.1. Function of the commutator
  • 3.2.2. Operation of the commutator-interpoles
  • 3.3. Motional e.m.f.
  • 3.3.1. Equivalent circuit
  • 3.4. D.C. motor-steady-state characteristics
  • 3.4.1. No-load speed
  • 3.4.2. Performance calculation-example
  • 3.4.3. Behaviour when loaded
  • 3.4.4. Base speed and field weakening
  • 3.4.5. Armature reaction
  • 3.4.6. Maximum output power
  • 3.5. Transient behaviour
  • 3.5.1. Dynamic behaviour and time-constants
  • 3.6. Four quadrant operation and regenerative braking
  • 3.6.1. Full speed regenerative reversal
  • 3.6.2. Dynamic braking
  • 3.7. Shunt and series motors
  • 3.7.1. Shunt motor-steady-state operating characteristics.
  • 3.7.2. Series motor-steady-state operating characteristics
  • 3.7.3. Universal motors
  • 3.8. Self-excited d.c. machine
  • 3.9. Toy motors
  • 3.10. Review questions
  • Chapter 4: D.C. motor drives
  • 4.1. Introduction
  • 4.2. Thyristor d.c. drives-general
  • 4.2.1. Motor operation with converter supply
  • 4.2.2. Motor current waveforms
  • 4.2.3. Discontinuous current
  • 4.2.4. Converter output impedance: Overlap
  • 4.2.5. Four-quadrant operation and inversion
  • 4.2.6. Single-converter reversing drives
  • 4.2.7. Double-converter reversing drives
  • 4.2.8. Power factor and supply effects
  • 4.3. Control arrangements for d.c. drives
  • 4.3.1. Current limits and protection
  • 4.3.2. Torque control
  • 4.3.3. Speed control
  • 4.3.4. Overall operating region
  • 4.3.5. Armature voltage feedback and IR compensation
  • 4.3.6. Drives without current control
  • 4.4. Chopper-fed d.c. motor drives
  • 4.4.1. Performance of chopper-fed d.c. motor drives
  • 4.4.2. Torque-speed characteristics and control arrangements
  • 4.5. D.C. servo drives
  • 4.5.1. Servo motors
  • 4.5.2. Position control
  • 4.6. Digitally-controlled drives
  • 4.7. Review questions
  • Chapter 5: Induction motors-Rotating field, slip and torque
  • 5.1. Introduction
  • 5.1.1. Outline of approach
  • 5.2. The rotating magnetic field
  • 5.2.1. Production of a rotating magnetic field
  • 5.2.2. Field produced by each phase-winding
  • 5.2.3. Resultant three-phase field
  • 5.2.4. Direction of rotation
  • 5.2.5. Main (air-gap) flux and leakage flux
  • 5.2.6. Magnitude of rotating flux wave
  • 5.2.7. Excitation power and VA
  • 5.2.8. Summary
  • 5.3. Torque production
  • 5.3.1. Rotor construction
  • 5.3.2. Slip
  • 5.3.3. Rotor induced e.m.f. and current
  • 5.3.4. Torque
  • 5.3.5. Rotor currents and torque-small slip
  • 5.3.6. Rotor currents and torque-large slip
  • 5.3.7. Generating-Negative slip.
  • 5.4. Influence of rotor current on flux
  • 5.4.1. Reduction of flux by rotor current
  • 5.5. Stator current-speed characteristics
  • 5.6. Review questions
  • Chapter 6: Induction motor-Operation from 50/60Hz supply
  • 6.1. Introduction
  • 6.2. Methods of starting cage motors
  • 6.2.1. Direct starting-Problems
  • 6.2.2. Star/delta (wye/mesh) starter
  • 6.2.3. Autotransformer starter
  • 6.2.4. Resistance or reactance starter
  • 6.2.5. Solid-state soft starting
  • 6.2.6. Starting using a variable-frequency inverter
  • 6.3. Run-up and stable operating regions
  • 6.3.1. Harmonic effects-Skewing
  • 6.3.2. High inertia loads-Overheating
  • 6.3.3. Steady-state rotor losses and efficiency
  • 6.3.4. Steady-state stability-Pull-out torque and stalling
  • 6.4. Torque-speed curves-Influence of rotor parameters
  • 6.4.1. Cage rotor
  • 6.4.2. Double cage and deep bar rotors
  • 6.4.3. Starting and run-up of slipring motors
  • 6.5. Influence of supply voltage on torque-speed curve
  • 6.6. Generating
  • 6.6.1. Generating region
  • 6.6.2. Self-excited induction generator
  • 6.6.3. Doubly-fed induction machine for wind power generation
  • 6.7. Braking
  • 6.7.1. Plug reversal and plug braking
  • 6.7.2. Injection braking
  • 6.8. Speed control (without varying the stator supply frequency)
  • 6.8.1. Pole-changing motors
  • 6.8.2. Voltage control of high-resistance cage motors
  • 6.8.3. Speed control of wound-rotor motors
  • 6.8.4. Slip energy recovery
  • 6.9. Power-factor control and energy optimisation
  • 6.10. Single-phase induction motors
  • 6.10.1. Principle of operation
  • 6.10.2. Capacitor run motors
  • 6.10.3. Split-phase motors
  • 6.10.4. Shaded pole motors
  • 6.11. Power range
  • 6.11.1. Scaling down-The excitation problem
  • 6.12. Review questions
  • Chapter 7: Variable frequency operation of induction motors
  • 7.1. Introduction.
  • 7.2. Variable frequency operation
  • 7.2.1. Steady-state operation-Importance of achieving full flux
  • 7.2.2. Torque-speed characteristics
  • 7.2.3. Limitations imposed by the inverter-Constant torque and constant power regions
  • 7.2.4. Limitations imposed by the motor
  • 7.2.5. Four quadrant capability
  • 7.3. Practical aspects of inverter-fed drives
  • 7.3.1. PWM voltage source inverter
  • 7.3.2. Current source induction motor drives
  • 7.3.3. Performance of inverter-fed drives
  • Open-loop (without speed/position feedback) induction motor drives
  • Closed-loop (with speed/position feedback) induction motor drives
  • Applications when field orientation or Direct Torque Control cannot be used
  • 7.4. Effect of inverter on the induction motor
  • 7.4.1. Acoustic noise
  • 7.4.2. Motor insulation and the impact of long inverter-motor cables
  • 7.4.3. Losses and impact on motor rating
  • 7.4.4. Bearing currents
  • 7.4.5. `Inverter grade induction motors
  • 7.5. Utility supply effects
  • 7.5.1. Harmonic currents
  • 7.5.2. Power factor
  • 7.6. Inverter and motor protection
  • 7.7. Review questions
  • Chapter 8: Field oriented control of induction motors
  • 8.1. Introduction
  • 8.2. Essential preliminaries
  • 8.2.1. Space phasor representation of m.m.f. waves
  • 8.2.2. Transformation of reference frames
  • 8.2.3. Transient and steady-states in electric circuits
  • 8.3. Circuit modelling of the induction motor
  • 8.3.1. Coupled circuits, induced EMF, and flux linkage
  • 8.3.2. Self and mutual inductance
  • 8.3.3. Obtaining torque from a circuit model
  • 8.3.4. Finding the rotor currents
  • 8.4. Steady-state torque under current-fed conditions
  • 8.4.1. Torque vs slip frequency-Constant stator current
  • 8.4.2. Torque vs slip frequency-Constant rotor flux linkage
  • 8.4.3. Flux and torque components of stator current
  • 8.5. Dynamic torque control.
  • 8.5.1. Special property of closely-coupled circuits.