Electric motors and drives fundamentals, types and applications
Electric Motors and Drives: Fundamentals, Types and Applications, Fifth Edition is intended primarily for non-specialist users or students of electric motors and drives, but many researchers and specialist industrialists have also acknowledged its value in providing a clear understanding of the fund...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Oxford, United Kingdom :
Newnes, an imprint of Elsevier
[2019].
|
Edición: | Fifth edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009631029606719 |
Tabla de Contenidos:
- Front Cover
- Electric Motors and Drives: Fundamentals, Types and Applications
- Copyright
- Contents
- Preface
- Chapter 1: Electric motors-The basics
- 1.1. Introduction
- 1.2. Producing rotation
- 1.2.1. Magnetic field and magnetic flux
- 1.2.2. Magnetic flux density
- 1.2.3. Force on a conductor
- 1.3. Magnetic circuits
- 1.3.1. Magnetomotive force (m.m.f.)
- 1.3.2. Electric circuit analogy
- 1.3.3. The air-gap
- 1.3.4. Reluctance and air-gap flux densities
- 1.3.5. Saturation
- 1.3.6. Magnetic circuits in motors
- 1.4. Torque production
- 1.4.1. Magnitude of torque
- 1.4.2. The beauty of slotting
- 1.5. Torque and motor volume
- 1.5.1. Specific loadings
- 1.5.2. Torque and rotor volume
- 1.5.3. Output power-Importance of speed
- 1.5.4. Power density (specific output power)
- 1.6. Energy conversion-Motional e.m.f
- 1.6.1. Elementary motor-Stationary conditions
- 1.6.2. Power relationships-Conductor moving at constant speed
- 1.7. Equivalent circuit
- 1.7.1. Motoring and generating
- 1.8. Constant voltage operation
- 1.8.1. Behaviour with no mechanical load
- 1.8.2. Behaviour with a mechanical load
- 1.8.3. Relative magnitudes of V and E, and efficiency
- 1.8.4. Analysis of primitive machine-Conclusions
- 1.9. General properties of electric motors
- 1.9.1. Operating temperature and cooling
- 1.9.2. Torque per unit volume
- 1.9.3. Power per unit volume and efficiency-Importance of speed
- 1.9.4. Size effects-Specific torque and efficiency
- 1.9.5. Rated voltage
- 1.9.6. Short-term overload
- 1.10. Review questions
- Chapter 2: Power electronic converters for motor drives
- 2.1. Introduction
- 2.1.1. General arrangement of drive
- 2.2. Voltage control-D.C. output from d.c. supply
- 2.2.1. Switching control
- 2.2.2. Transistor chopper
- 2.2.3. Chopper with inductive load-Overvoltage protection.
- 2.2.4. Boost converter
- 2.3. D.C. from a.c.-Controlled rectification
- 2.3.1. The thyristor
- 2.3.2. Single pulse rectifier
- 2.3.3. Single-phase fully-controlled converter-Output voltage and control
- Resistive load
- Inductive (motor) load
- 2.3.4. Three-phase fully-controlled converter
- 2.3.5. Output voltage range
- 2.3.6. Firing circuits
- 2.4. A.C. from d.c.-Inversion
- 2.4.1. Single-phase inverter
- 2.4.2. Output voltage control
- Mode A
- Mode B
- Mode C
- Mode D
- 2.4.3. Three-phase inverter
- 2.4.4. Multi-level inverter
- 2.4.5. Braking
- 2.4.6. Active front end
- 2.5. A.C. from a.c.
- 2.5.1. The cycloconverter
- 2.5.2. The matrix converter
- 2.6. Inverter switching devices
- 2.6.1. Bipolar junction transistor (BJT)
- 2.6.2. Metal oxide semiconductor field effect transistor (MOSFET)
- 2.6.3. Insulated gate bipolar transistor (IGBT)
- 2.7. Converter waveforms, acoustic noise, and cooling
- 2.7.1. Cooling of switching devices-Thermal resistance
- 2.7.2. Arrangement of heatsinks and forced-air cooling
- 2.8. Review questions
- Chapter 3: D.C. motors
- 3.1. Introduction
- 3.2. Torque production
- 3.2.1. Function of the commutator
- 3.2.2. Operation of the commutator-interpoles
- 3.3. Motional e.m.f.
- 3.3.1. Equivalent circuit
- 3.4. D.C. motor-steady-state characteristics
- 3.4.1. No-load speed
- 3.4.2. Performance calculation-example
- 3.4.3. Behaviour when loaded
- 3.4.4. Base speed and field weakening
- 3.4.5. Armature reaction
- 3.4.6. Maximum output power
- 3.5. Transient behaviour
- 3.5.1. Dynamic behaviour and time-constants
- 3.6. Four quadrant operation and regenerative braking
- 3.6.1. Full speed regenerative reversal
- 3.6.2. Dynamic braking
- 3.7. Shunt and series motors
- 3.7.1. Shunt motor-steady-state operating characteristics.
- 3.7.2. Series motor-steady-state operating characteristics
- 3.7.3. Universal motors
- 3.8. Self-excited d.c. machine
- 3.9. Toy motors
- 3.10. Review questions
- Chapter 4: D.C. motor drives
- 4.1. Introduction
- 4.2. Thyristor d.c. drives-general
- 4.2.1. Motor operation with converter supply
- 4.2.2. Motor current waveforms
- 4.2.3. Discontinuous current
- 4.2.4. Converter output impedance: Overlap
- 4.2.5. Four-quadrant operation and inversion
- 4.2.6. Single-converter reversing drives
- 4.2.7. Double-converter reversing drives
- 4.2.8. Power factor and supply effects
- 4.3. Control arrangements for d.c. drives
- 4.3.1. Current limits and protection
- 4.3.2. Torque control
- 4.3.3. Speed control
- 4.3.4. Overall operating region
- 4.3.5. Armature voltage feedback and IR compensation
- 4.3.6. Drives without current control
- 4.4. Chopper-fed d.c. motor drives
- 4.4.1. Performance of chopper-fed d.c. motor drives
- 4.4.2. Torque-speed characteristics and control arrangements
- 4.5. D.C. servo drives
- 4.5.1. Servo motors
- 4.5.2. Position control
- 4.6. Digitally-controlled drives
- 4.7. Review questions
- Chapter 5: Induction motors-Rotating field, slip and torque
- 5.1. Introduction
- 5.1.1. Outline of approach
- 5.2. The rotating magnetic field
- 5.2.1. Production of a rotating magnetic field
- 5.2.2. Field produced by each phase-winding
- 5.2.3. Resultant three-phase field
- 5.2.4. Direction of rotation
- 5.2.5. Main (air-gap) flux and leakage flux
- 5.2.6. Magnitude of rotating flux wave
- 5.2.7. Excitation power and VA
- 5.2.8. Summary
- 5.3. Torque production
- 5.3.1. Rotor construction
- 5.3.2. Slip
- 5.3.3. Rotor induced e.m.f. and current
- 5.3.4. Torque
- 5.3.5. Rotor currents and torque-small slip
- 5.3.6. Rotor currents and torque-large slip
- 5.3.7. Generating-Negative slip.
- 5.4. Influence of rotor current on flux
- 5.4.1. Reduction of flux by rotor current
- 5.5. Stator current-speed characteristics
- 5.6. Review questions
- Chapter 6: Induction motor-Operation from 50/60Hz supply
- 6.1. Introduction
- 6.2. Methods of starting cage motors
- 6.2.1. Direct starting-Problems
- 6.2.2. Star/delta (wye/mesh) starter
- 6.2.3. Autotransformer starter
- 6.2.4. Resistance or reactance starter
- 6.2.5. Solid-state soft starting
- 6.2.6. Starting using a variable-frequency inverter
- 6.3. Run-up and stable operating regions
- 6.3.1. Harmonic effects-Skewing
- 6.3.2. High inertia loads-Overheating
- 6.3.3. Steady-state rotor losses and efficiency
- 6.3.4. Steady-state stability-Pull-out torque and stalling
- 6.4. Torque-speed curves-Influence of rotor parameters
- 6.4.1. Cage rotor
- 6.4.2. Double cage and deep bar rotors
- 6.4.3. Starting and run-up of slipring motors
- 6.5. Influence of supply voltage on torque-speed curve
- 6.6. Generating
- 6.6.1. Generating region
- 6.6.2. Self-excited induction generator
- 6.6.3. Doubly-fed induction machine for wind power generation
- 6.7. Braking
- 6.7.1. Plug reversal and plug braking
- 6.7.2. Injection braking
- 6.8. Speed control (without varying the stator supply frequency)
- 6.8.1. Pole-changing motors
- 6.8.2. Voltage control of high-resistance cage motors
- 6.8.3. Speed control of wound-rotor motors
- 6.8.4. Slip energy recovery
- 6.9. Power-factor control and energy optimisation
- 6.10. Single-phase induction motors
- 6.10.1. Principle of operation
- 6.10.2. Capacitor run motors
- 6.10.3. Split-phase motors
- 6.10.4. Shaded pole motors
- 6.11. Power range
- 6.11.1. Scaling down-The excitation problem
- 6.12. Review questions
- Chapter 7: Variable frequency operation of induction motors
- 7.1. Introduction.
- 7.2. Variable frequency operation
- 7.2.1. Steady-state operation-Importance of achieving full flux
- 7.2.2. Torque-speed characteristics
- 7.2.3. Limitations imposed by the inverter-Constant torque and constant power regions
- 7.2.4. Limitations imposed by the motor
- 7.2.5. Four quadrant capability
- 7.3. Practical aspects of inverter-fed drives
- 7.3.1. PWM voltage source inverter
- 7.3.2. Current source induction motor drives
- 7.3.3. Performance of inverter-fed drives
- Open-loop (without speed/position feedback) induction motor drives
- Closed-loop (with speed/position feedback) induction motor drives
- Applications when field orientation or Direct Torque Control cannot be used
- 7.4. Effect of inverter on the induction motor
- 7.4.1. Acoustic noise
- 7.4.2. Motor insulation and the impact of long inverter-motor cables
- 7.4.3. Losses and impact on motor rating
- 7.4.4. Bearing currents
- 7.4.5. `Inverter grade induction motors
- 7.5. Utility supply effects
- 7.5.1. Harmonic currents
- 7.5.2. Power factor
- 7.6. Inverter and motor protection
- 7.7. Review questions
- Chapter 8: Field oriented control of induction motors
- 8.1. Introduction
- 8.2. Essential preliminaries
- 8.2.1. Space phasor representation of m.m.f. waves
- 8.2.2. Transformation of reference frames
- 8.2.3. Transient and steady-states in electric circuits
- 8.3. Circuit modelling of the induction motor
- 8.3.1. Coupled circuits, induced EMF, and flux linkage
- 8.3.2. Self and mutual inductance
- 8.3.3. Obtaining torque from a circuit model
- 8.3.4. Finding the rotor currents
- 8.4. Steady-state torque under current-fed conditions
- 8.4.1. Torque vs slip frequency-Constant stator current
- 8.4.2. Torque vs slip frequency-Constant rotor flux linkage
- 8.4.3. Flux and torque components of stator current
- 8.5. Dynamic torque control.
- 8.5.1. Special property of closely-coupled circuits.