Biomaterials a systems approach to engineering concepts

Biomaterials: A Systems Approach to Engineering Concepts provides readers with a systems approach to biomaterials and materials engineering. By focusing on the mechanical needs of implants, disease states, and current clinical needs, readers are encouraged to design materials and systems targeted at...

Descripción completa

Detalles Bibliográficos
Otros Autores: Love, Brian, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England : Academic Press 2017.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630659506719
Tabla de Contenidos:
  • Front Cover
  • Biomaterials
  • Copyright Page
  • Dedication
  • Contents
  • Author Bio
  • Preface
  • Acknowledgments
  • 1 Cell Biology
  • 1.1 Introduction
  • 1.2 Cell Composition and Make-Up
  • 1.2.1 The Nucleus
  • 1.2.2 The Endoplasmic Reticulum, ER
  • 1.2.3 Mitochondria
  • 1.2.4 The Golgi Apparatus
  • 1.2.5 Cell Structure
  • 1.2.6 The Membrane Structure: Phospholipids
  • 1.2.7 Receptors
  • 1.3 Cell Classifications
  • 1.3.1 Stem Cells
  • 1.3.2 Differentiated Cells and Other Classifications
  • 1.4 Cells Associated With Specific Organs and Systems
  • 1.4.1 Cells Found in Blood
  • 1.4.1.1 Platelets
  • 1.4.1.2 Red Blood Cells (RBCs or Erythrocytes)
  • 1.4.1.3 White Blood Cells: Monocytes and Neutrophils
  • 1.5 Cells Found with the Nervous System
  • 1.6 Cells Found in Fibrous, Bony, and Cartilage Connective Tissues
  • 1.7 Reclassifying Cells Based on Organ Function and Physiology
  • 1.7.1 Endothelial Vs Urothelial Cells
  • 1.7.2 Metabolic Cells Found in the Pancreas
  • 1.7.3 Metabolic Cells Found in the Liver
  • 1.7.4 Sentry Cells
  • 1.8 Observation of Cell Size and Morphology: Microscopy
  • 1.9 Bacterial Cell Types
  • 1.10 Conclusions
  • 1.11 Problems
  • References
  • 2 Cell Expression: Proteins and Their Characterization
  • 2.1 Introduction
  • 2.2 Protein Molecular Weight
  • 2.3 Protein Polydispersity
  • 2.4 Biochemical Determination of Molecular Weight
  • 2.5 Protein Thermodynamics
  • 2.6 Typical Proteinaceous Polymers
  • 2.6.1 Collagen
  • 2.6.2 Keratin
  • 2.6.3 Elastin
  • 2.6.4 Albumin
  • 2.7 Conclusion
  • 2.8 Problems
  • References
  • Further Reading
  • 3 Bones and Mineralized Tissues
  • 3.1 Introduction
  • 3.2 Cortical Bone
  • 3.2.1 Cortical Bone Anatomy
  • 3.2.2 The 3.4.2: Haversian System
  • 3.2.3 Composition and Properties of Cortical Bone
  • 3.3 Cancellous (Spongy Bone)
  • 3.3.1 Anatomy of Spongy Bone.
  • 3.3.2 Composition and Mechanical Behavior of Spongy Bone
  • 3.4 Teeth
  • 3.4.1 Tooth Anatomy and Evolution
  • 3.4.2 Plaque, Organic Acids, Alter pH and Demineralize Tooth Surfaces
  • 3.4.3 Dentin Exposure Through the Gum-line: Periodontal Disease
  • 3.4.4 Tooth Statics and Dynamics: The Origins of Orthodontia
  • 3.4.5 Endodonics: Resolving the Dying Internal Structure of a Tooth
  • 3.4.6 Sealants as a Preventive Procedure to Fight Tooth Decay
  • 3.4.7 Oral Surgery, Bone Implants, and Fracture Fixation
  • 3.5 Conclusions
  • 3.6 Problems
  • References
  • 4 Connective and Soft Tissues
  • 4.1 Introduction
  • 4.2 Protein Structure and Composition in the Circulatory System
  • 4.3 Protein Structure of Valvular Tissue and Leaflets
  • 4.3.1 Valve and Leaflet Defects
  • 4.3.2 Aneurysms and Fistulae
  • 4.3.3 Aortic Dissection
  • 4.4 Dermal Tissues, Including Hair and Nerves
  • 4.4.1 The Skin
  • 4.4.2 The Subcutaneous or Adipose Tissues
  • 4.4.3 The Dermis
  • 4.4.4 The Stratum Corneum and Epidermis
  • 4.4.5 Skin Care as a Business
  • 4.5 Hair
  • 4.5.1 Hair Morphology
  • 4.5.2 Features and Attributes of Hair
  • 4.5.3 Hair as a Business
  • 4.6 Nails
  • 4.7 Muscle Tissues
  • 4.8 Looking Ahead
  • 4.9 Conclusions
  • 4.10 Problems
  • References
  • 5 Property Assessments of Tissues
  • 5.1 Introduction
  • 5.2 Mechanical Properties
  • 5.2.1 Uniaxial Extension and Compression
  • 5.3 How Much Does the Humerus Bone Length Shrink Upon Loading With the Bar?
  • 5.3.1 The Tensile Test
  • 5.3.2 Hookes Law and Hookean Behavior
  • 5.4 Strength
  • 5.4.1 Yield Strength
  • 5.5 Bending
  • 5.6 Torsion
  • 5.7 Cyclic Loading and Fatigue Resistance
  • 5.8 Relationship to Natural Materials
  • 5.9 Viscoelasticity
  • 5.9.1 Maxwell Model
  • 5.9.1.1 Voigt model: retarded behavior
  • 5.10 Time-Dependent Stress-Strain Behavior
  • 5.11 Physical Property Determinations
  • 5.11.1 Density.
  • 5.11.2 Conventional X-ray Measurements
  • 5.11.3 Computer Tomography Aided X-Ray Analysis
  • 5.11.4 Magnetic Resonance Imaging
  • 5.12 Optical Properties
  • 5.12.1 UV/Visible Light Transmission
  • 5.13 Electrical Properties of Tissues
  • 5.14 Conclusions
  • 5.15 Problems
  • References
  • 6 Environmental Effects on Natural Tissues
  • 6.1 Introduction
  • 6.2 Arteriosclerosis
  • 6.3 Kidney Disease
  • 6.3.1 Models of Kidney Transport
  • 6.4 Obesity
  • 6.5 Osteoporosis
  • 6.6 Valvular Diseases
  • 6.7 Cancer
  • 6.8 Amyloid Diseases
  • 6.9 Skin: How is Aging Manifested?
  • 6.10 Burns and Prior Connective Tissue Trauma
  • 6.11 Conclusions and Final Thoughts
  • 6.12 Problems
  • References
  • 7 Metallic Biomaterials
  • 7.1 Introduction
  • 7.1.1 Metals and Phase Equilibria
  • 7.1.2 Features of Solid Solutions and Those of Limited Solubility
  • 7.1.3 Attributes of the Binary Phase Diagram
  • 7.1.4 More Complicated and Realistic Phase Diagrams: Three or More Components
  • 7.2 Characterizing Phase Structure
  • 7.3 Metallic Biomaterial Types
  • 7.3.1 Steels
  • 7.3.2 Co-Cr Alloys
  • 7.3.3 Titanium and Titanium Alloys
  • 7.3.4 NiTi Shape Memory Alloys
  • 7.3.5 Gold, Gold Alloys, and Other Precious Metal Alloys
  • 7.3.6 Other Precious Metals: Pt/ Rh/Pd
  • 7.3.7 Amalgam
  • 7.4 Mechanical Properties
  • 7.5 Schemes to Stress Shielding Further?
  • 7.5.1 β Phase Titanium Alloys
  • 7.5.2 Magnesium-Based Biodegradable Alloys
  • 7.6 Processing
  • 7.7 Conclusion
  • 7.8 Problems
  • References
  • 8 Ceramic Biomaterials
  • 8.1 Introduction
  • 8.2 CaHAP
  • 8.3 Aluminum Oxide: Al2O3
  • 8.4 Zirconia: ZrO2
  • 8.5 Porcelains
  • 8.6 Carbon
  • 8.7 Processing Schemes and Structures
  • 8.8 Mechanical and Physical Properties
  • 8.9 Particulate Bioceramics
  • 8.10 Bioactive Ceramic Structures
  • 8.11 Relationship With Environment
  • 8.12 Functional Usage
  • 8.13 Conclusion
  • 8.14 Problems.
  • References
  • 9 Polymeric Biomaterials
  • 9.1 Introduction
  • 9.1.1 Radical Polymerization
  • 9.1.2 Step Polymerization
  • 9.1.3 Copolymerization
  • 9.2 Phase Behavior of Polymers
  • 9.3 Classes of Common Biomedical Polymers
  • 9.3.1 Polyolefins
  • 9.3.1.1 Polyethylene
  • 9.3.1.2 Polypropylene
  • 9.3.2 Beyond olefins: Acrylates
  • 9.3.2.1 Methyl methacrylate
  • 9.3.2.2 BisGMA
  • 9.3.3 Condensation polymers: Polyamides
  • 9.3.3.1 Nylon polyamide 6,6
  • 9.3.3.2 Polyamide 6.10, others
  • 9.3.3.3 Polycaprolactum, Nylon 6
  • 9.3.4 Condensation polymers: Polyesters
  • 9.3.4.1 Polyethylene terephthalate
  • 9.3.4.2 Polycarbonate
  • 9.3.4.3 Polylactic acid/polyglycolic acid/polycaprolactone
  • 9.4 Polyethers
  • 9.5 Silicones
  • 9.6 Natural Polymers
  • 9.7 Other Polymers
  • 9.8 Hydrogels, Scaffolds, and Other Degrading Structures
  • 9.9 Polymeric Sutures
  • 9.10 Drug Delivery: Hydrophilic and Amphiphilic Polymers as Vehicles
  • 9.11 Conclusions
  • 9.12 Problems
  • References
  • 10 Nanomaterials and Phase Contrast Imaging Agents
  • 10.1 Introduction
  • 10.2 X-ray Diagnostics and Phase Contrast Agents
  • 10.2.1 GI Blockage Assessments
  • 10.2.2 Cardiovascular Phase Contrast Angiography
  • 10.3 MRI Phase Contrast Agents
  • 10.4 PET Imaging
  • 10.5 Conclusion
  • 10.6 Problems
  • References
  • 11 Orthopedics
  • 11.1 Introduction
  • 11.2 Trauma-Induced Fracture and Repair Strategies
  • 11.2.1 Etiology and Epidemiology of Fracture
  • 11.2.2 Materials of Choice in Fracture Fixation
  • 11.2.3 Tendon and Ligament Repair
  • 11.2.4 Spine Stabilization
  • 11.3 Trauma and Disease in Articulating Joints
  • 11.3.1 The Epidemiology and Etiology of Joint Disease
  • 11.4 Joint Types
  • 11.4.1 Hinge Joints
  • 11.4.2 Ball and Socket Joints
  • 11.4.3 Pivot/Rotary Joints
  • 11.4.4 Gliding/Saddle Joints
  • 11.5 The Mechanics of Joint Replacement.
  • 11.6 The Tribology of Joint Replacements: Impact on Joint Lifetime
  • 11.7 Point to the Future
  • 11.8 Thought Exercise: Short-Term Surgical Viability Versus Long-Term Survival
  • 11.9 Other Schemes to Reduce the Wear on Sterilized Surfaces
  • 11.10 Conclusions
  • 11.11 Problems
  • References
  • 12 Neural Interventions
  • 12.1 Introduction
  • 12.2 Aneurysm and Cerebrovascular Modulation
  • 12.2.1 Clips
  • 12.2.2 Coils
  • 12.2.3 Embolic Fluids
  • 12.2.3.1 Dispersion-based Embolics
  • 12.2.3.2 Reactive Liquid Embolics
  • 12.2.4 Filling of Other Defects
  • 12.3 Neural Probes and Stimulators
  • 12.4 Conclusion
  • 12.5 Problems
  • References
  • 13 Cardiovascular Interventions
  • 13.1 Introduction
  • 13.2 Valvular Repairs: Rationale for Intervention: Murmurs, Regurgitation, Congestive Heart Failure
  • 13.2.1 Sutures to Address Leaflet Tears
  • 13.2.2 Annulolasty Rings
  • 13.3 Prosthetic and Bioprosthetic Replacement Valves
  • 13.4 Outcomes
  • 13.5 Interchamber Defects
  • 13.6 Vascular Grafts
  • 13.6.1 Dacron Grafts
  • 13.6.2 Expanded Polytetrafluoroethylene (ePTFE)
  • 13.7 Stents
  • 13.8 Drug Eluting Stents
  • 13.9 Added Constraints: Pediatric Cardiac Interventions
  • 13.10 Pacemakers, Defibrillators, and Associated Hardware
  • 13.11 Conclusions
  • 13.12 Pointing to the Future
  • 13.13 Problems
  • References
  • 14 Artificial Organs
  • 14.1 Kidney: Dialysis
  • 14.1.1 Dialysis Options
  • 14.1.2 Peritoneal Dialysis
  • 14.1.3 Hemodialysis
  • 14.1.4 Continuous Metabolite Extraction
  • 14.2 Artificial Pancreas
  • 14.3 Artificial Bladders
  • 14.4 Pivoting to the future
  • 14.5 Problems
  • References
  • 15 Special Topics: Assays Applied to Both Health and Sports
  • 15.1 Introduction and Historical Basis
  • 15.2 What Can be Learned From Urinalysis?
  • 15.2.1 Liquid Chromatography-Based Determinations
  • 15.2.2 Pee Strip Determinations
  • 15.3 Blood Doping.
  • 15.4 Conclusion.