Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib

Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demon...

Descripción completa

Detalles Bibliográficos
Autor principal: Johansson, Robert. author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2019.
Edición:2nd ed. 2019.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630658306719
Tabla de Contenidos:
  • 1. Introduction to Computing with Python
  • 2. Vectors, Matrices and Multidimensional Arrays
  • 3. Symbolic Computing
  • 4. Plotting and Visualization
  • 5. Equation Solving
  • 6. Optimization
  • 7. Interpolation
  • 8. Integration
  • 9. Ordinary Differential Equations
  • 10. Sparse Matrices and Graphs
  • 11. Partial Differential Equations
  • 12. Data Processing and Analysis
  • 13. Statistics
  • 14. Statistical Modeling
  • 15. Machine Learning
  • 16. Bayesian Statistics
  • 17. Signal and Image Processing
  • 18. Data Input and Output
  • 19. Code Optimization.