Numerical Python Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib
Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demon...
Autor principal: | |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Berkeley, CA :
Apress
2019.
|
Edición: | 2nd ed. 2019. |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630658306719 |
Tabla de Contenidos:
- 1. Introduction to Computing with Python
- 2. Vectors, Matrices and Multidimensional Arrays
- 3. Symbolic Computing
- 4. Plotting and Visualization
- 5. Equation Solving
- 6. Optimization
- 7. Interpolation
- 8. Integration
- 9. Ordinary Differential Equations
- 10. Sparse Matrices and Graphs
- 11. Partial Differential Equations
- 12. Data Processing and Analysis
- 13. Statistics
- 14. Statistical Modeling
- 15. Machine Learning
- 16. Bayesian Statistics
- 17. Signal and Image Processing
- 18. Data Input and Output
- 19. Code Optimization.