PySpark Recipes A Problem-Solution Approach with PySpark2

Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark R...

Descripción completa

Detalles Bibliográficos
Autor principal: Mishra, Raju Kumar. author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Berkeley, CA : Apress 2018.
Edición:1st ed. 2018.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630430306719
Tabla de Contenidos:
  • Chapter 1: The Era of Big Data, Hadoop, and Other Big Data Processing Frameworks
  • Chapter 2: Installation
  • Chapter 3: Introduction to Python and NumPy
  • Chapter 4: Spark Architecture and Resilient Distributed Dataset
  • Chapter 5: The Power of Pairs: Paired RDD
  • Chapter 6: IO in PySpark
  • Chapter 7: Optimizing PySpark and PySpark Streaming
  • Chapter 8: PySparkSQL
  • Chapter 9: PySpark MLlib and Linear Regression.