Nanostructures for novel therapy synthesis, characterization and applications

Nanostructures for Novel Therapy: Synthesis, Characterization and Applications focuses on the fabrication and characterization of therapeutic nanostructures, in particular, synthesis, design, and in vitro and in vivo therapeutic evaluation. The chapters provide a cogent overview of recent therapeuti...

Descripción completa

Detalles Bibliográficos
Otros Autores: Ficai, Denisa, author (author), Grumezescu, Alexandru Mihai, editor (editor), Ficai, Denisa, editor
Formato: Libro electrónico
Idioma:Inglés
Publicado: Boston, MA : Elsevier [2017]
Edición:1st edition
Colección:Micro & nano technologies.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630315606719
Tabla de Contenidos:
  • Cover
  • Title page
  • Copyright
  • Contents
  • List of Contributors
  • Foreword of the Series
  • Preface
  • About the Series (Volumes I-V)
  • About Volume I
  • Chapter 1 - Novel approaches for preparation of nanoparticles
  • 1 - Introduction
  • 1.1 - Evolution of Metal Nanoparticles in Pharmacy and Biotechnology
  • 2 - Synthetic Methods for Preparation of Metal Nanoparticles
  • 2.1 - Thermal Decomposition Method
  • 2.2 - Sol-Gel Method
  • 2.2.1 - Aqueous sol-gel method
  • 2.2.2 - Nonaqueous sol-gel method
  • 2.3 - Hydrothermal and Solvothermal Method
  • 2.4 - Microwave-Assisted Method
  • 2.5 - Polyol Method
  • 2.6 - Sonochemical Method
  • 2.7 - Liquid-Liquid Interface Method
  • 2.8 - Phase-Transfer Method
  • 2.9 - Biosynthesis Method
  • 2.10 - Template-Directed Synthetic Method
  • 3 - Application of Metal Nanoparticles in Theranostics
  • 3.1 - Diagnosis and Drug Delivery
  • 4 - Conclusions
  • Acknowledgments
  • References
  • Chapter 2 - Applications of nanoscale drugs carriers in the treatment of chronic diseases
  • 1 - Introduction in Drug Delivery and Targeting
  • 1.1 - Passive and Active Targeting
  • 1.2 - Smart Drug Delivery Systems-Drug Carriers
  • 1.3 - Microparticle Carriers
  • 1.4 - Smart Stimuli Responsive Drug Delivery Systems
  • 1.4.1 - pH
  • 1.4.2 - Temperature
  • 1.4.3 - Light
  • 1.4.4 - Electrical field
  • 1.4.5 - Magnetic field
  • 1.4.6 - Ultrasounds
  • 2 - Applications of Nanotechnology in Drug Delivery and Targeting
  • 2.1 - Targeted Drug Delivery for Cancer Therapy
  • 2.1.1 - Drug nanocarriers
  • 2.1.1.1 - Gold nanoparticles
  • 2.1.1.2 - Silver nanoparticles
  • 2.1.1.3 - Magnetic nanoparticles
  • 2.1.1.4 - Quantum dots
  • 2.1.1.5 - Mesoporous silica nanoparticles
  • 2.2 - Targeted Drug Delivery for Cardiovascular Diseases
  • 2.3 - Targeted Drug Delivery for Diabetes
  • 3 - Conclusions
  • References.
  • Chapter 3 - Functionalization of nanoparticles in specific targeting and mechanism release
  • 1 - Introduction
  • 2 - Controlled-Release Mechanisms
  • 2.1 - Extended Release
  • 2.2 - Stimuli-Responsive Release
  • 2.2.1 - pH-responsive nanocarriers
  • 2.2.2 - Redox-responsive nanocarriers
  • 2.2.3 - Enzyme-responsive nanocarriers
  • 2.2.4 - Thermoresponsive nanocarriers
  • 2.2.5 - Photoresponsive nanocarriers
  • 2.2.6 - Sonic and ultrasonic-responsive nanocarriers
  • 2.2.7 - Other stimuli-responsive nanocarriers
  • 3 - Project of Nanoparticles
  • 3.1 - Size and Shape
  • 3.2 - Surface Properties
  • 4 - Nanoparticles Targeting
  • 4.1 - Passive Targeting
  • 4.2 - Active Targeting
  • 4.2.1 - Aptamers
  • 4.2.2 - Small molecules
  • 4.2.3 - Peptides
  • 4.2.4 - Antibodies and their fragments
  • 4.2.5 - Carbohydrates and glycoproteins
  • 5 - Conclusions
  • References
  • Chapter 4 - Fabrication and characterization of natural/synthesized, micro-, and nanostructured materials for biomedical applic...
  • 1 - Introduction
  • 2 - Pearl Shell
  • 2.1 - Macro- and Microstructures
  • 3 - Microstructure Analysis of Nacre by Transmission Electron Microscopy
  • 4 - Micro-/Nanoparticles
  • 5 - Surface Modification of Nanoparticles
  • 5.1 - Shape Control: Iron Oxide Nanocubes
  • 5.2 - Shape-Induced Self-Assembly of Nanocubes
  • 6 - 2D Periodic Structure by Thermal Imprinting Process
  • 7 - Functionalities for Biomedical Applications
  • 7.1 - Thermal Coagulation Therapy
  • 7.1.1 - Mechanism for the heat generation
  • 7.1.2 - Ferrite materials for thermal coagulation therapy
  • 7.1.3 - Heat generation ability for Y3Fe5O12
  • 7.1.4 - Preparation of microspheres for embolization method
  • 7.2 - Apatite Formation
  • 7.2.1 - TEM observation of HAp formation on nacre
  • 7.2.2 - Effect of heat treatment of nacre on the HAp formation in SBF
  • 7.3 - Dissolution of Pearl Particles.
  • 8 - Summary and Future Directions
  • References
  • Chapter 5 - Multifunctional nanostructured biopolymeric materials for therapeutic applications
  • 1 - Introduction
  • 2 - Biopolymers
  • 2.1 - Natural Biopolymers: Polysaccharides and Proteins
  • 2.1.1 - Chitosan
  • 2.1.2 - Cellulose
  • 2.1.3 - Collagen
  • 2.1.4 - Alginate
  • 2.2 - Biopolymers From Biotechnology
  • 2.2.1 - Polyglycolide
  • 2.2.2 - Polylactic acid
  • 2.2.3 - Polylactide-co-glycolide
  • 2.3 - Biopolymers From Microorganisms
  • 2.3.1 - Polyhydroxyalkanoates
  • 2.4 - Biopolymers From Petrochemical Sources
  • 2.4.1 - Polycaprolactone
  • 2.4.2 - Polyurethanes
  • 3 - Multifunctional Nanostructured Materials
  • 3.1 - Shape-Controlled Nanostructures
  • 3.2 - Nanocomposites
  • 3.3 - Nanostructured Surface
  • 4 - Therapeutic Applications
  • 4.1 - Targeted Delivery
  • 4.2 - Cancer Therapy
  • 4.3 - Tissue Engineering
  • 4.3.1 - Selection of a stem cell type
  • 4.3.2 - Selection of a biomaterial with specific properties
  • 4.3.3 - Selection of an "in vivo" or "ex vivo" strategy for generating/regenerating the tissue/organ
  • 5 - Conclusions and Perspectives
  • References
  • Chapter 6 - Polymeric pharmaceutical nanoparticles developed by electrospray
  • 1 - Introduction
  • 2 - Polymeric Particles and Atomizers
  • 2.1 - Polymer Nanoparticles
  • 2.2 - Preparation of Particles
  • 2.3 - Atomization
  • 2.4 - Electrospray Advantages and Disadvantages
  • 3 - Electrospray
  • 3.1 - History of Electrohydrodynamic Atomization (Electrospraying and Electrospinning)
  • 3.2 - Principles and Theoretical Aspects
  • 3.2.1 - Basic principles
  • 3.2.2 - Scaling laws for the size
  • 3.3 - Electrospray Modes
  • 3.4 - EHDA Configurations
  • 3.5 - Particle Production by EHDA
  • 3.5.1 - Particle production by monoaxial EHDA
  • 3.5.2 - Particle production by coaxial EHDA (CEHDA)
  • 3.6 - Effective Parameters in electrospray.
  • 4 - Therapeutic Nanoparticles Loaded by Electrospray
  • 4.1 - Single Needle EHDA Processing
  • 4.1.1 - Particles
  • 4.1.2 - Aerosols
  • 4.1.3 - Porous particles
  • 4.2 - Two-Needle Coaxial Electrospray
  • 4.2.1 - Capsules
  • 4.2.2 - Bubble particles
  • 4.2.3 - Porous particles
  • 4.2.4 - Hollow particles
  • 4.3 - Multicapillary Electrospray
  • 5 - Conclusions
  • References
  • Chapter 7 - Nanoformulation and administration of PUFA-rich systems for applications in modern healthcare
  • 1 - Introduction
  • 2 - Lipid Nanoparticles: Types and Fabrication Technology
  • 2.1 - Nanoencapsulation
  • 2.2 - Liposomes
  • 2.3 - Nanocochleates
  • 2.4 - Nanodispersions
  • 2.5 - Micelles
  • 2.6 - Nanoemulsions
  • 2.7 - Multilayer Nanoemulsions
  • 2.8 - Filled Hydrogel Particles
  • 2.9 - Solid-Lipid Nanoparticles
  • 2.10 - Nanostructured Lipid Carriers
  • 3 - Understanding the Physiological System for Therapy: The Significance of Lipid Nanotechnology at Tissue and Cellular Level
  • 3.1 - The Potential of Nanoparticles for Targeted Action at Tissue Level
  • 3.1.1 - The gastrointestinal barrier
  • 3.1.2 - The blood-brain barrier
  • 3.2 - The Facets of Nanoparticle Play at Cellular Level
  • 4 - Therapeutic Lipid Nanostructures
  • 4.1 - For the Delivery of PUFAs
  • 4.2 - Nanostructures for Cardiovascular Disease Treatment
  • 4.3 - Nanostructures in Neurodegenerative Disease Treatment
  • 4.4 - Nanostructures in Diabetes Management
  • 4.5 - Nanostructures for Cancer Treatment
  • 4.6 - Nanostructures for Infectious Diseases Treatment
  • 4.7 - Nanostructures in Overcoming Proinflammatory Conditions
  • 5 - Risk and Hazard Assessment
  • 5.1 - Organic Solvents for Fabrication
  • 5.2 - Potentially Hazardous Stabilizers and Surfactants
  • 5.3 - Encapsulating Polymers
  • 6 - Challenges and Scope
  • 7 - Conclusions
  • Acknowledgments
  • References.
  • Chapter 8 - Electrospinning and surface modification methods for functionalized cell scaffolds
  • 1 - Electrospinning for Tissue Engineering
  • 2 - Fundamentals of the Electrospinning Process
  • 2.1 - Polymer Solution Parameters
  • 2.1.1 - Polymer concentration
  • 2.1.2 - Solvent volatility
  • 2.1.3 - Solution conductivity
  • 2.2 - Process Parameters
  • 2.2.1 - Applied voltage
  • 2.2.2 - Polymer flow rate
  • 2.2.3 - Tip-collector distance
  • 2.3 - Electrospun Fiber Materials
  • 2.3.1 - Poly(glycolic acid) (PGA)
  • 2.3.2 - Poly(lactic acid) (PLA)
  • 2.3.3 - Poly(ε-caprolactone) (PCL)
  • 2.3.4 - Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)
  • 2.3.5 - Collagen
  • 2.3.6 - Elastin
  • 3 - Tuning the Morphology of Electrospun Scaffolds and its Effects on Cell Behavior
  • 3.1 - Fiber Uniformity
  • 3.2 - Fiber Diameter
  • 3.3 - Fiber Orientation
  • 3.4 - Pore Size of Electrospun Scaffold
  • 4 - Surface Modification Methods of Electrospun Nanofibers
  • 4.1 - Loading Biomolecules
  • 4.1.1 - Physical surface adsorption
  • 4.1.2 - Blend electrospinning
  • 4.1.3 - Core-shell electrospinning
  • 4.1.4 - Covalent immobilization of bioactive molecules
  • 4.2 - Plasma Treatment
  • 4.3 - Surface Graft Copolymerization
  • 5 - Conclusions
  • References
  • Chapter 9 - Short peptide self-assembled nanostructures for therapeutics innovative delivery
  • 1 - Introduction
  • 1.1 - The Advantages of Nanomaterials
  • 1.2 - Self-Assembling Short Peptides as Nanomaterial Building Blocks
  • 1.3 - Self-Assembling Short Peptides for Drug Delivery
  • 2 - Preparation and Characterization of Self-Assembling Short Peptides
  • 2.1 - Preparation of Short Peptides
  • 2.2 - Characterization of Self-Assembling Short Peptides
  • 3 - Drug-Delivery Applications
  • 3.1 - Supramolecular Hydrogels as Systems for Drug Delivery.
  • 3.2 - Physical Drug Entrapment in the Supramolecular Hydrogel Matrix.