Statistical techniques for transportation engineering
Statistical Techniques for Transportation Engineering is written with a systematic approach in mind and covers a full range of data analysis topics, from the introductory level (basic probability, measures of dispersion, random variable, discrete and continuous distributions) through more generally...
Otros Autores: | , |
---|---|
Formato: | Libro electrónico |
Idioma: | Inglés |
Publicado: |
Oxford, England ; Cambridge, Massachusetts :
Butterworth-Heinemann
2017.
|
Edición: | 1st edition |
Materias: | |
Ver en Biblioteca Universitat Ramon Llull: | https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630295806719 |
Tabla de Contenidos:
- Front Cover
- Statistical Techniques for Transportation Engineering
- Copyright Page
- Contents
- Preface
- 1 An Overview of Statistical Applications
- 1.1 Introduction
- 1.2 Probability Functions and Statistics
- 1.2.1 Discrete Versus Continuous Functions
- 1.2.2 Distributions Describing Randomness
- 1.2.3 Data Organization
- 1.2.4 Common Statistical Estimators
- 1.2.4.1 Measures of Central Tendency
- 1.2.4.2 Measures of Dispersion
- 1.3 Applications of Normal Distribution
- 1.3.1 The Standard Normal Distribution
- 1.3.2 Characteristics of the Normal Distribution Function
- 1.4 Confidence Bounds
- 1.5 Determination of Sample Size
- 1.6 Random Variables Summation
- 1.6.1 The Central Limit Theorem
- 1.6.1.1 Sum of Travel Times
- 1.6.1.2 Hourly Volumes
- 1.6.1.3 Sum of Normal Distributions
- 1.7 The Binomial Distributions
- 1.7.1 Bernoulli and the Binomial Distribution
- 1.7.2 Asking People Questions Survey Results
- 1.7.3 The Binomial and the Normal Distributions
- 1.8 The Poisson Distribution
- 1.9 Testing of Hypothesis
- 1.9.1 Before-and-After Tests With Two Distinct Choices
- 1.9.1.1 Application: Travel Time Decrease
- 1.9.1.2 Application: Focus on the Travel Time Difference
- 1.9.2 Before-and-After Tests With Generalized Alternative Hypothesis
- 1.9.2.1 An Application: Travel Time Differences
- 1.9.2.2 One-Sided Versus Two-Sided Tests
- 1.9.3 Other Useful Statistical Tests
- 1.9.3.1 The t-Test
- 1.9.3.2 The F-Test
- 1.9.3.3 Chi-Square Test: Hypotheses or an Underlying Distribution f(x)
- 1.10 Summary
- 2 Preliminaries
- 2.1 Introduction
- 2.2 Basic Concepts
- 2.2.1 Characteristics
- 2.2.2 Attributes
- 2.2.3 Variables
- 2.2.4 Numeric Variables
- 2.2.5 Categorical Variables
- 2.2.6 Data
- 2.2.6.1 Primary Data
- 2.2.6.2 Secondary Data
- 2.2.7 Classification and Tabulation.
- 2.3 Tabulation of Data
- 2.4 Frequency Distribution
- 2.4.1 Simple Frequency Distribution
- 2.4.2 Grouped Frequency Distribution
- 2.4.2.1 Solved Examples
- 2.5 Cumulative Frequency Table
- 2.5.1 Less Than Cumulative Frequency Table
- 2.5.2 More Than Cumulative Frequency Table
- 2.6 Measures of Central Tendency
- 2.7 Arithmetic Mean
- 2.7.1 Simple Arithmetic Average
- 2.7.1.1 Shortcut Method (Method of Deviations)
- 2.7.2 Weighted Arithmetic Mean
- 2.7.2.1 Combined Arithmetic Mean
- 2.7.2.1.1 Solved Examples
- 2.7.3 Merits of Arithmetic Mean
- 2.7.4 Demerits of Arithmetic Mean
- 2.7.5 Properties of Mean
- 2.7.5.1 Solved Examples
- 2.7.6 Statistical Applications to Transportation Engineering
- 2.8 Median
- 2.8.1 Merits of Median
- 2.8.2 Demerits of Median
- 2.8.2.1 Solved Examples
- 2.9 Mode
- 2.9.1 Merits of Mode
- 2.9.2 Demerits of Mode
- 2.9.2.1 Solved Examples
- 2.10 Geometric Mean
- 2.10.1 Merits of Geometric Mean
- 2.10.2 Demerits of Geometric Mean
- 2.10.2.1 Solved Examples
- 2.11 Harmonic Mean
- 2.11.1 Merits of Harmonic Mean
- 2.11.2 Demerits of Harmonic Mean
- 2.11.3 Relation Between AM, GM, and HM
- 2.11.3.1 Solved Examples
- 2.12 Partition Values (Quartiles, Deciles, and Percentiles)
- 2.12.1 Quartiles
- 2.12.2 Deciles
- 2.12.3 Percentiles
- 2.13 Measures of Dispersion
- 2.13.1 Characteristics of an Ideal Measure of Dispersion
- 2.13.2 Types of Measures of Dispersion
- 2.14 Range
- 2.14.1 Coefficient of Range
- 2.14.2 Merits of Range
- 2.14.3 Demerits of Range
- 2.14.4 Uses of Range
- 2.15 Interquartile Range
- 2.16 Quartile Deviation
- 2.16.1 Coefficient of Quartile Deviation
- 2.16.1.1 Merits of Quartile Deviation
- 2.16.1.2 Demerits of Quartile Deviation
- 2.17 Mean Deviation
- 2.17.1 Coefficient of Mean Deviation
- 2.17.2 Merits of Mean Deviation.
- 2.17.3 Demerits of Mean Deviation
- 2.17.4 Uses of Mean Deviation
- 2.18 Standard Deviation
- 2.18.1 Coefficient of Standard Deviation
- 2.18.2 Merits of Standard Deviation
- 2.18.3 Demerits of Standard Deviation
- 2.18.3.1 Uses
- 3 Probability
- 3.1 Introduction
- 3.2 Classical Probability
- 3.2.1 Properties of Classical Probability
- 3.2.2 Probability of Failure
- 3.3 Relative Frequency Approach of Probability
- 3.4 Symbolic Notation
- 3.5 Axiomatic Theory of Probability
- 3.6 Independent and Dependent Events
- 3.7 Conditional Probability
- 3.8 Multiplication Theorem on Probability
- 3.8.1 Solved Examples
- 3.9 Baye's Theorem
- 4 Random Variables
- 4.1 Introduction
- 4.2 Discrete Random Variable
- 4.3 Probability Distribution for a Discrete Random Variable
- 4.3.1 Probability Mass Function
- 4.3.2 Distribution Function
- 4.3.3 Additional Properties of Distribution Function
- 4.4 Mean and Variance of a Discrete Distribution
- 4.5 Continuous Random Variable
- 4.6 Probability Density Function
- 4.7 Cumulative Distribution Function
- 4.8 Mean and Variance of a Continuous Random Variable
- 4.8.1 Solved Examples
- 4.9 Joint Distributions
- 4.9.1 Joint Probability Function
- 4.9.2 Joint Probability Distribution of Discrete Random Variables
- 4.9.3 Marginal Probability Function of a Discrete Random Variables
- 4.9.4 Joint Distributive Function of Discrete Random Variables
- 4.10 Conditional Probability Distribution
- 4.11 Independent Random Variables
- 4.12 Joint Probability Function of Continuous Random Variables
- 4.13 Joint Probability Distribution Function of Continuous Random Variables
- 4.14 Marginal Distribution Function
- 4.14.1 Marginal Density Functions
- 4.15 Conditional Probability Density Functions
- 4.16 Mathematical Expectation and Moments
- 4.16.1 Properties of Mathematical Expectation.
- 4.16.2 Variance
- 4.16.3 Properties of Variance
- 4.16.4 Covariance
- 4.17 Moments
- 4.17.1 Moments About an Arbitrary Number
- 4.17.2 Moments About Origin
- 4.17.3 Skewness and Kurtosis
- 4.18 Moment Generating Function
- 4.19 Properties of Moment Generating Function
- 4.19.1 Solved Examples
- 4.20 Discrete Probability Distributions
- 4.20.1 Binomial Distribution
- 4.20.2 Expected Frequencies and Fitting of a Binomial Distribution
- 4.20.3 Recurrence Relation
- 4.20.4 Moments, Skewness, and Kurtosis of the Binomial Distribution
- 4.20.5 Moment Generating Function of a Binomial Distribution
- 4.20.6 Characteristics of a Binomial Distribution
- 4.20.6.1 Solved Examples
- 4.21 Poisson Distribution
- 4.21.1 Conditions Under Which Poisson Distribution Is Used
- 4.21.2 Poisson Probability Function
- 4.21.3 Poisson Frequency Distribution
- 4.21.4 Moment of a Poisson Distribution
- 4.21.5 Recurrence Relation
- 4.21.6 Characteristics of Poisson Distribution
- 4.21.7 Moment Generating Function of the Poisson Distribution
- 4.21.8 Reproductive Property of the Poisson Distribution
- 4.21.8.1 Solved Examples
- 4.22 Discrete Uniform Distribution
- 4.23 The Negative Binomial and Geometric Distribution
- 4.24 Geometric Distribution
- 4.25 Continuous Probability Distributions
- 4.25.1 Uniform Distribution
- 4.25.1.1 Moments of the Uniform Distribution
- 4.25.1.2 Mean of Uniform Distribution
- 4.25.1.3 Variance of Uniform Distribution
- 4.25.1.4 Moment Generating Function of the Uniform Distribution
- 4.25.2 Exponential and Negative Exponential Distribution
- 4.26 Normal Distribution
- 4.26.1 Standard Normal Variable
- 4.26.2 Distribution Function φ(Z) of Standard Normal Variate
- 4.26.3 Area Under Normal Curve
- 4.26.4 Area Under Standard Normal Curve
- 4.26.5 Properties of Normal Curve
- 4.26.6 Mean of Normal Distribution.
- 4.26.7 Variance of Normal Distribution
- 4.26.8 Mode of Normal Distribution
- 4.26.9 Median of the Normal Distribution
- 4.26.10 Moment Generating Function of Normal Distribution With Respect to Origin
- 4.26.11 Mean Deviation of Normal Distribution
- 4.26.11.1 Solved Examples
- 4.26.12 Fitting a Normal Distribution
- 4.26.13 Linear Combination of Independent Normal Variables
- 4.26.14 Fitting a Normal Distribution
- 4.26.15 Normal Approximation to Binomial Distribution
- 4.27 Characteristic Function
- 4.28 Gamma Distribution
- 4.28.1 Mean and Variance of Gamma Distribution
- 4.28.2 Gamma Distribution of Second Kind
- 4.29 Beta Distribution of First Kind
- 4.29.1 Beta Distribution of Second Kind
- 4.30 Weibull Distribution
- 5 Curve Fitting
- 5.1 Introduction
- 5.2 The Method of Least Squares
- 5.3 The Least-Squares Line
- 5.4 Fitting a Parabola by the Method of Least Squares
- 5.5 Fitting the exponential curve of the form y=a ebx
- 6 Correlation and Regression
- 6.1 Introduction
- 6.2 Correlation
- 6.2.1 Types of Correlation
- 6.3 Coefficient of Correlation
- 6.3.1 Properties of Coefficient of Correlation
- 6.4 Methods of Finding Coefficient of Correlation
- 6.5 Scatter Diagram
- 6.6 Direct Method
- 6.7 Spearman's Rank Correlation Coefficient
- 6.7.1 Rank Correlation Coefficient When the Ranks Are Tied
- 6.8 Calculation of r (Correlation Coefficient) (Karl Pearson's Formula)
- 6.9 Regression
- 6.10 Regression Equation
- 6.11 Curve of Regression
- 6.12 Types of Regression
- 6.13 Regression Equations (Linear Fit)
- 6.13.1 Linear Regression Equation of y on x
- 6.13.2 Regression Equation of x and y
- 6.14 Angle between Two Lines of Regression
- 6.15 Coefficient of Determination
- 6.16 Coefficient Nondetermination
- 6.17 Coefficient of Alienation
- 6.17.1 Solved Examples
- 6.18 Multilinear Regression.
- 6.19 Uses of Regression Analysis.