Python high performance build robust application by implementing concurrent and distributed processing techniques

Learn how to use Python to create efficient applications About This Book Identify the bottlenecks in your applications and solve them using the best profiling techniques Write efficient numerical code in NumPy, Cython, and Pandas Adapt your programs to run on multiple processors and machines with pa...

Descripción completa

Detalles Bibliográficos
Otros Autores: Lanaro, Gabriele, author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Birmingham, England ; Mumbai, [India] : Packt 2017.
Edición:Second edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630203906719
Descripción
Sumario:Learn how to use Python to create efficient applications About This Book Identify the bottlenecks in your applications and solve them using the best profiling techniques Write efficient numerical code in NumPy, Cython, and Pandas Adapt your programs to run on multiple processors and machines with parallel programming Who This Book Is For The book is aimed at Python developers who want to improve the performance of their application. Basic knowledge of Python is expected What You Will Learn Write efficient numerical code with the NumPy and Pandas libraries Use Cython and Numba to achieve native performance Find bottlenecks in your Python code using profilers Write asynchronous code using Asyncio and RxPy Use Tensorflow and Theano for automatic parallelism in Python Set up and run distributed algorithms on a cluster using Dask and PySpark In Detail Python is a versatile language that has found applications in many industries. The clean syntax, rich standard library, and vast selection of third-party libraries make Python a wildly popular language. Python High Performance is a practical guide that shows how to leverage the power of both native and third-party Python libraries to build robust applications. The book explains how to use various profilers to find performance bottlenecks and apply the correct algorithm to fix them. The reader will learn how to effectively use NumPy and Cython to speed up numerical code. The book explains concepts of concurrent programming and how to implement robust and responsive applications using Reactive programming. Readers will learn how to write code for parallel architectures using Tensorflow and Theano, and use a cluster of computers for large-scale computations using technologies such as Dask and PySpark. By the end of the book, readers will have learned to achieve performance and scale from their Python applications. Style and approach A step-by-step practical guide filled with real-world use cases and examples
Notas:Includes index.
Descripción Física:1 online resource (252 pages)
ISBN:9781787282438