Learning TensorFlow a guide to building deep learning systems

Roughly inspired by the human brain, deep neural networks trained with large amounts of data can solve complex tasks with unprecedented accuracy. This practical book provides an end-to-end guide to TensorFlow, the leading open source software library that helps you build and train neural networks fo...

Descripción completa

Detalles Bibliográficos
Otros Autores: Hope, Tom (Data scientist) author (author), Resheff, Yehezkel S., author, Lieder, Itay, author
Formato: Libro electrónico
Idioma:Inglés
Publicado: Beijing, [China] : O'Reilly 2017.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630168506719
Tabla de Contenidos:
  • Introduction
  • Go with the flow : up and running with TensorFlow
  • Understanding TensorFlow basics
  • Convolution neural networks
  • Text I : working with text and sequences, and TensorBoard visualization
  • Text II : word vectors, advanced RNN, and embedding visualization
  • TensorFlow abstractions and simplifications
  • Queues, threads, and reading data
  • Distributed TensorFlow
  • Exporting and serving models with TensorFlow.