Wheeled mobile robotics from fundamentals towards autonomous systems

Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systems covers the main topics from the wide area of mobile robotics, explaining all applied theory and application. The book gives the reader a good foundation, enabling them to continue to more advanced topics. Several examples are incl...

Descripción completa

Detalles Bibliográficos
Otros Autores: Klančar, Gregor, author (author), Klancar, Gregor, editor (editor)
Formato: Libro electrónico
Idioma:Inglés
Publicado: London, England : Butterworth-Heinemann 2017.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630135106719
Tabla de Contenidos:
  • Front Cover
  • Wheeled Mobile Robotics: From Fundamentals Towards Autonomous Systems
  • Copyright
  • Contents
  • Preface
  • Acknowledgements
  • Chapter 1: Introduction to Mobile Robotics
  • 1.1 Introduction
  • 1.1.1 Robots
  • 1.1.2 Mobile
  • 1.1.3 Wheels
  • 1.1.4 Autonomous Mobile Systems
  • 1.2 History
  • 1.3 About the Book
  • References
  • Chapter 2: Motion Modeling for Mobile Robots
  • 2.1 Introduction
  • 2.2 Kinematics of Wheeled Mobile Robots
  • 2.2.1 Differential Drive
  • 2.2.2 Bicycle Drive
  • 2.2.3 Tricycle Drive
  • 2.2.4 Tricycle With a Trailer
  • 2.2.5 Car (Ackermann) Drive
  • 2.2.6 Synchronous Drive
  • 2.2.7 Omnidirectional Drive
  • 2.2.8 Tracked Drive
  • 2.3 Motion Constraints
  • 2.3.1 Holonomic Constraints
  • 2.3.2 Nonholonomic Constraints
  • 2.3.3 Integrability of Constraints
  • 2.3.4 Vector Fields, Distribution, Lie Bracket
  • 2.3.5 Controllability of Wheeled Mobile Robots
  • 2.4 Dynamic Model of a Mobile System With Constraints
  • 2.4.1 State-Space Representation of the Dynamic Model of a Mobile System With Constraints
  • 2.4.2 Kinematic and Dynamic Model of Differential Drive Robot
  • Kinematic Model and Constraints
  • Dynamic Model
  • References
  • Chapter 3: Control of Wheeled Mobile Systems
  • 3.1 Introduction
  • 3.2 Control to Reference Pose
  • 3.2.1 Orientation Control
  • 3.2.2 Forward-Motion Control
  • 3.2.3 Basic Approaches
  • Control to Reference Position
  • Control to Reference Pose Using an Intermediate Point
  • Control to Reference Pose Using an Intermediate Direction
  • Control on a Segmented Continuous Path Determined by a Line and a Circle Arc
  • From Reference Pose Control to Reference Path Control
  • 3.3 Trajectory Tracking Control
  • 3.3.1 Trajectory Tracking Control Using Basic Approaches
  • 3.3.2 Decomposing Control to Feedforward and Feedback Action
  • 3.3.3 Feedback Linearization.
  • 3.3.4 Development of the Kinematic Trajectory-Tracking Error Model
  • 3.3.5 Linear Controller
  • 3.3.6 Lyapunov-Based Control Design
  • 3.3.7 Takagi-Sugeno Fuzzy Control Design in the LMI Framework
  • Takagi-Sugeno Fuzzy Error Model of a Differentially Driven Wheeled Mobile Robot
  • PDC Control of a Differentially Driven Wheeled Mobile Robot
  • 3.3.8 Model-Based Predictive Control
  • Discrete MPC
  • 3.3.9 Particle Swarm Optimization-Based Control
  • MPC With PSO
  • 3.3.10 Visual Servoing Approaches for Solving the Control Problems in Mobile Robotics
  • 3.4 Optimal Velocity Profile Estimation for a Known Path
  • References
  • Chapter 4: Path Planning
  • 4.1 Introduction
  • 4.1.1 Robot Environment
  • 4.1.2 Path Planning
  • 4.1.3 Configuration and Configuration Space
  • 4.1.4 Mathematical Description of Obstacle Shape and Pose in the Environment
  • Border-Based Description of Obstacles
  • Obstacle Description Using Intersecting Half-Planes
  • 4.2 Environment Presentation for Path Planning Purposes
  • 4.2.1 Graph Representation
  • 4.2.2 Cell Decomposition
  • Accurate Decomposition to Cells
  • Approximate Decomposition to Cells
  • 4.2.3 Roadmap
  • Visibility Graph
  • Voronoi Graph
  • Triangulation
  • 4.2.4 Potential Field
  • 4.2.5 Sampling-Based Path-Planning
  • RRT Method
  • PRM Method
  • 4.3 Simple Path Planning Algorithms:Bug Algorithms
  • 4.3.1 Bug0 Algorithm
  • 4.3.2 Bug1 Algorithm
  • 4.3.3 Bug2 Algorithm
  • 4.4 Graph-Based Path Planning Methods
  • 4.4.1 Breadth-First Search
  • 4.4.2 Depth-First Search
  • 4.4.3 Iterative Deepening Depth-First Search
  • 4.4.4 Dijkstra's Algorithm
  • 4.4.5 A∗ Algorithm
  • 4.4.6 Greedy Best-First Search
  • References
  • Chapter 5: Sensors Used in Mobile Systems
  • 5.1 Introduction
  • 5.2 Coordinate Frame Transformations
  • 5.2.1 Orientation and Rotation
  • 5.2.2 Translation and Rotation.
  • 5.2.3 Kinematics of Rotating Frames
  • Rotational Kinematics Expressed by Quaternions
  • 5.2.4 Projective Geometry
  • Multiview Geometry
  • Singular Cases
  • 3D Reconstruction
  • 5.3 Pose Measurement Methods
  • 5.3.1 Dead Reckoning
  • Odometry
  • Inertial Navigation
  • 5.3.2 Heading Measurement
  • 5.3.3 Active Markers and Global Position Measurement
  • Global Navigation Satellite System
  • 5.3.4 Navigation Using Environmental Features
  • Straight-Line Features
  • Split-and-Merge Algorithm
  • Evolving Straight-Line Clustering
  • Hough Transform
  • Color Features
  • Artificial Pattern Markers
  • Natural Local Image Features
  • 5.3.5 Matching of Environment Models: Maps
  • 5.4 Sensors
  • 5.4.1 Sensor Characteristics
  • 5.4.2 Sensor Classifications
  • References
  • Chapter 6: Nondeterministic Events in Mobile Systems
  • 6.1 Introduction
  • 6.2 Basics of Probability
  • 6.2.1 Discrete Random Variable
  • 6.2.2 Continuous Random Variable
  • 6.2.3 Bayes' Rule
  • 6.3 State Estimation
  • 6.3.1 Disturbances and Noise
  • 6.3.2 Estimate Convergence and Bias
  • 6.3.3 Observability
  • 6.4 Bayesian Filter
  • 6.4.1 Markov Chains
  • 6.4.2 State Estimation From Observations
  • 6.4.3 State Estimation From Observations and Actions
  • 6.4.4 Localization Example
  • 6.4.5 Environment Sensing
  • 6.4.6 Motion in the Environment
  • 6.4.7 Localization in the Environment
  • 6.5 Kalman Filter
  • 6.5.1 Kalman Filter in Matrix Form
  • 6.5.2 Extended Kalman Filter
  • 6.5.3 Kalman Filter Derivatives
  • 6.6 Particle Filter
  • References
  • Chapter 7: Autonomous Guided Vehicles
  • 7.1 Introduction
  • 7.2 Autonomous Transportation Vehicles
  • 7.2.1 About
  • 7.2.2 Setup
  • 7.2.3 Sensors
  • 7.2.4 Localization and Mapping
  • 7.2.5 Control
  • 7.2.6 Path Planning
  • 7.2.7 Decision Making
  • 7.3 Wheeled Mobile Robots in Agriculture
  • 7.3.1 Introduction (About)
  • 7.3.2 Service Unit Setup.
  • 7.3.3 Localization, Mapping, and SLAM
  • 7.3.4 Control Strategies
  • 7.3.5 Planning Routes and Scheduling
  • 7.4 Wheeled Mobile Robots in Industry
  • 7.4.1 About
  • 7.4.2 Setup
  • 7.4.3 Sensors
  • 7.4.4 Localization and Mapping
  • 7.4.5 Control
  • 7.4.6 Path Planning
  • 7.4.7 Decision Making
  • 7.5 Wheeled Mobile Robots in Domestic Environments
  • 7.5.1 About
  • 7.5.2 Setup
  • 7.5.3 Sensors
  • 7.5.4 Localization and Mapping
  • 7.5.5 Path Planning
  • 7.5.6 Control
  • 7.5.7 Decision Making
  • 7.6 Assistive Mobile Robots in Walking Rehabilitation Therapy
  • 7.6.1 About
  • 7.6.2 Setup
  • 7.6.3 Sensors
  • 7.6.4 Localization and Mapping
  • 7.6.5 Control
  • 7.6.6 Path Planning
  • References
  • Chapter 8: Project Examples for Laboratory Practice
  • 8.1 Introduction
  • 8.2 Localization Based on Bayesian Filter Within a Network of Paths and Crossroads
  • 8.2.1 Introduction
  • 8.2.2 Line Following
  • 8.2.3 Odometry
  • 8.2.4 Map Building
  • 8.2.5 Localization
  • 8.3 Localization Based on Extended Kalman Filter Using Indoor Global Positioning System and Odometry
  • 8.3.1 Introduction
  • 8.3.2 Experimental Setup
  • 8.3.3 Extended Kalman Filter
  • 8.4 Particle-Filter-Based Localization in a Pattern of Colored Tiles
  • 8.4.1 Introduction
  • 8.4.2 Experimental Setup
  • 8.4.3 Manual Control
  • 8.4.4 Wheel Odometry
  • 8.4.5 Color Sensor Calibration
  • 8.4.6 Particle Filter
  • 8.5 Control of Vehicles in a Linear Formation
  • 8.5.1 Introduction
  • 8.5.2 Localization Using Odometry
  • 8.5.3 Estimating Reference Trajectory
  • 8.5.4 Linear Formation Control
  • 8.6 Motion and Strategy Control of Multiagent Soccer Robots
  • 8.6.1 Introduction
  • 8.6.2 Motion Control
  • 8.6.3 Behavior-Based Agent Operation
  • 8.6.4 Multiagent Game Strategy
  • 8.7 Image-Based Control of a Mobile Robot
  • 8.7.1 Introduction
  • 8.7.2 Experimental Setup
  • 8.7.3 Position-Based Visual Servoing.
  • 8.7.4 Image-Based Visual Servoing
  • 8.7.5 Natural Image Features
  • 8.8 Particle-Filter-Based Localization Using an Array of Ultrasonic Distance Sensors
  • 8.8.1 Introduction
  • 8.8.2 Predicting Particles' Locations From Known Robot Motion
  • 8.8.3 Sensor Model for Particle Measurement Prediction
  • 8.8.4 Correction Step of Particle Filter and Robot Pose Estimate
  • 8.9 Path Planning of a Mobile Robot in a Known Environment
  • 8.9.1 Experimental Setup
  • 8.9.2 A* Path Searching Algorithm
  • 8.9.3 Optimum Path in the Map of the Environment
  • References
  • Index
  • Back Cover.