Thoughtful machine learning with Python a test-driven approach

Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext. Featuring graphs and highlighted code examples throughout, the book fe...

Descripción completa

Detalles Bibliográficos
Otros Autores: Kirk, Matthew (Data scientist) author (author)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Beijing : O'Reilly 2017.
Edición:First edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009630069206719
Descripción
Sumario:Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext. Featuring graphs and highlighted code examples throughout, the book features tests with Python’s Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you’re a software engineer or business analyst interested in data science, this book will help you: Reference real-world examples to test each algorithm through engaging, hands-on exercises Apply test-driven development (TDD) to write and run tests before you start coding Explore techniques for improving your machine-learning models with data extraction and feature development Watch out for the risks of machine learning, such as underfitting or overfitting data Work with K-Nearest Neighbors, neural networks, clustering, and other algorithms
Notas:Includes index.
Descripción Física:1 online resource (216 pages) : color illustrations
Bibliografía:Includes bibliographical references and index.
ISBN:9781491924082
9781491924129
9781491924105