Direct eigen control for induction machines and synchronous motors

Clear presentation of a new control process applied to induction machine (IM), surface mounted permanent magnet synchronous motor (SMPM-SM) and interior permanent magnet synchronous motor (IPM-SM) Direct Eigen Control for Induction Machines and Synchronous Motors provides a clear and concise explan...

Descripción completa

Detalles Bibliográficos
Otros Autores: Alacoque, Jean-Claude, author (author)
Formato: Libro electrónico
Idioma:Inglés
Edición:1st edition
Colección:Wiley - IEEE
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009628586806719
Tabla de Contenidos:
  • Acknowledgements v
  • Contents vi
  • Foreword x
  • Foreword xii
  • Preface xiv
  • 1 Formulation of the motor control problem xiv
  • 1.1 Electromagnetic torque xiv
  • 1.2 Response time in tracking mode and on disturbances xv
  • 1.3 Limitations xvi
  • 2 Field orientation controls xviii
  • 3 Sliding mode control families xviii
  • 4 Objectives of a new motor control xx
  • 5 Objectives of this work xxiii
  • Capter 1 - Induction machine 1
  • 1 Electrical equations and equivalent circuits 1
  • 1.1 Definitions and notations 1
  • 1.2 Equivalent electrical circuits 2
  • 1.3 Differential equation system 4
  • 1.4 Interpretation of electrical relations 6
  • 2 State-space equation system working out 11
  • 2.1 State-space equations in the fixed plane 13
  • 2.2 State-space equations in the complex plane 16
  • 2.3 Complex state-space equation discretization 17
  • 2.4 Evolution matrix diagonalization 19
  • 2.4.1 Eigenvalues 19
  • 2.4.2 Transfer matrix algebraic calculation 20
  • 2.4.3 Transfer matrix inversion 21
  • 2.5 Projection of state-space vectors in the eigenvector basis 23
  • 3 Discretized state-space equation inversion 24
  • 3.1 Introduction of the rotating frame 24
  • 3.2 State-space vector calculations in the eigenvector basis 27
  • 3.3 Control calculation - eigenstate-space equation system inversion 34
  • 4 Control 35
  • 4.1 Constitution of the set-point state-space vector 35
  • 4.2 Constitution of the initial state-space vector 38
  • 4.3Control process 38
  • 4.3.1 Real-time implementation 38
  • 4.3.2 Measure filtering 41
  • 4.3.3 Transition and input matrix calculations 41
  • 4.3.4 Kalman's filter, observation and prediction 42
  • 4.3.5 Synoptic of measurement, filtering and prediction 44
  • 4.4 Limitations 47
  • 4.4.1 Voltage limitation 48
  • 4.4.2 Current limitation 51
  • 4.4.3 Operating area and limits 51
  • 4.4.4 Set-point limit algebraic calculations 52
  • 4.5 Example of implementation 65
  • 4.5.1 Adjustment of flux and torque - Limitations in traction operation 65.
  • 4.5.2 Adjustment of flux and torque - Limitations in electrical braking 68
  • 4.5.3 Free evolution - Short-circuit torque 70
  • 5 Conclusion on the induction machine control 74
  • Chapter 2 - Surface mounted permanent magnet synchronous motor. 76
  • 1 Electrical equations and equivalent circuit 77
  • 1.1 Definitions and notations: 77
  • 1.2 Equivalent electrical circuit 77
  • 1.3 Differential equation system 79
  • 2 Working out of the state-space equation system 80
  • 2.1 State-space equations in the fixed plane 81
  • 2.2 State-space equations in the complex plane 83
  • 2.3 Complex state-space equation discretization 84
  • 2.4 Evolution matrix diagonalization 85
  • 2.4.1 Eigenvalues 85
  • 2.4.2 Transfer matrix calculation 85
  • 2.4.3 Transfer matrix inversion 87
  • 2.5 Projection of state-space vectors in the eigenvector basis 88
  • 3 Discretized state-space equation inversion 88
  • 3.1 Introduction of the rotating frame 88
  • 3.2 State-space vector calculations in the eigenvector basis 89
  • 3.3 Control computation - Eigenstate-space equations inversion 95
  • 4 Control 98
  • 4.1 Constitution of set-point state-space vector 98
  • 4.2 Constitution of the initial state-space vector 99
  • 4.3 Control process 100
  • 4.3.1 Real-time implementation 100
  • 4.3.2 Measure filtering 102
  • 4.3.3 Transition and control matrix calculations 103
  • 4.3.4 Kalman's filter, observation and prediction 104
  • 4.3.5 Synoptic of measurement, filtering and prediction 106
  • 4.4 Limitations 110
  • 4.4.1 Voltage limitation 111
  • 4.4.2 Current limitation 114
  • 4.4.3 Operating area and limits 114
  • 4.4.4 Set-point limit calculations 115
  • 4.5 Example of implementation 128
  • 4.5.1 Adjustment of torque - Limitations in traction operation 129
  • 4.5.2 Adjustment of torque - Limitations in electrical braking 131
  • 4.5.3 Free evolution - Short-circuit torque 132
  • 5 Conclusion on SMPM-SM 138
  • Chapter 3 - Interior permanent magnet synchronous motor 139
  • 1 Electrical equations and equivalent circuits 140.
  • 1.1 Definitions and notations 140
  • 1.2 Equivalent electrical circuits 141
  • 1.3 Differential equation system 142
  • 2 Working out of the state-space equation system 146
  • 2.1 State-space equations in the fixed plane 147
  • 2.2 State-space equations in the complex plane 149
  • 2.3 State-space equation discretization 149
  • 2.4 Evolution matrix diagonalization 149
  • 2.4.1 Eigenvalues 150
  • 2.4.2 Transfer matrix calculation 152
  • 2.4.3 Transfer matrix inversion 153
  • 2.5 Projection of state-space vectors in the eigenvector basis 154
  • 3 Discretized state-space equation inversion 155
  • 3.1 Rotating reference frame 155
  • 3.2 State-space vector calculations in the eigenvector basis 155
  • 3.2.1 Calculation of third and fourth coordinates of the state-space equation 160
  • 3.2.2 Calculation of the first and the second coordinate of the state-space eigenvector 162
  • 3.3 Control calculation - Eigenstate-space equations inversion 162
  • 4 Control 165
  • 4.1 Constitution of the set-point state-space vector 165
  • 4.2 Constitution of the initial state-space vector 168
  • 4.3 Control process 169
  • 4.3.1 Real-time implementation 170
  • 4.3.2 Measure filtering 172
  • 4.3.3 Transition and input matrix calculations 174
  • 4.3.4 Kalman's filter 176
  • 4.3.5 Synoptic of measurement, filtering and prediction 179
  • 4.4 Limitations 183
  • 4.4.1 Voltage limitation 184
  • 4.4.2 Current limitation 192
  • 4.4.3 Operating area and limits 193
  • 4.4.4 Set-point limit calculation 194
  • 4.5 Example of implementation 208
  • 4.5.1 Adjustment of torque - Limitations in traction mode 209
  • 4.5.2 Adjustment of torque - Limitations in electrical braking 212
  • 4.5.3 Free evolution - Short-circuit torque 214
  • 5 Conclusions on the IPM-SM 219
  • Chapter 4 - Inverter supply - LC Filter 220
  • 1 Electrical equations and equivalent circuit 220
  • 1.1 Definitions and notations 220
  • 1.2 Equivalent electrical circuit 221
  • 1.3 Differential equation system 222
  • 2 Working out of the state-space equation system 222.
  • 2.1 State-space equations in a fixed frame 223
  • 2.2 State-space equations in the complex plane 224
  • 2.3 State-space equation discretization 224
  • 2.4 Evolution matrix diagonalization 225
  • 2.4.1 Eigenvalues 225
  • 2.4.2 Transfer matrix calculation 226
  • 2.4.3 Transfer matrix inversion 227
  • 3 Discretized state-space equation inversion 228
  • 3.1 Evolution matrix diagonalization 228
  • 3.2 State-space equation discretization 228
  • 3.3 State-space vector calculations in the eigenvector basis 229
  • 4 Control 231
  • 4.1 Constitution of the set-point state-space vector 231
  • 4.2 Constitution of the initial state-space vector 232
  • 4.3 Inversion - Line current control by the useful current 232
  • 4.4 Capacitor voltage control by the useful current 235
  • 4.5 General case - Control by the useful current 237
  • 4.6 Example of implementation 239
  • 4.6.1 Lack of capacitor voltage stabilization 239
  • 4.6.2 Capacitor voltage stabilization 240
  • 5 Conclusions on power LC filter stabilization 243
  • Conclusion 245
  • Appendix 1 - Calculation of vectorial PWM 248
  • 1 PWM types 248
  • 2 Work out of control voltage vector 249
  • 3 Other examples of a vectorial PWM 252
  • 3.1 Unsymmetrical vectorial PWM 252
  • 3.2 Symmetrical triangular wave based PWM 253
  • 3.3 Synchronous PWM 254
  • 4 Sampled shape of the voltage and current waves 255
  • Appendix 2 - Transfer matrix calculation 257
  • 1 First eigenvector calculation 257
  • 2 Second eigenvector calculation 258
  • 3 Third eigenvector calculation 260
  • 4 Fourth eigenvector calculation 262
  • 5 Transfer matrix calculation 263
  • Appendix 3 - Transfer matrix inversion 264
  • 1 Transfer matrix determinant calculation 265
  • 2 First row, first column 265
  • 3 First row, second column 266
  • 4 First row, third column 266
  • 5 First row, fourth column 266
  • 6 Second row, first column 267
  • 7 Second row, second column 267
  • 8 Second row, third column 267
  • 9 Second row, fourth column 268
  • 10 Third row, first column 268.
  • 11 Third row, second column 268
  • 12 Third row, third column 268
  • 13 Third row, fourth column 268
  • 14 Fourth row, first column 269
  • 15 Fourth row, second column 269
  • 16 Fourth row, third column 269
  • 17 Fourth row, fourth column 269
  • 18 Inverse transfer matrix calculation 269
  • Appendix 4 - State-space eigenvector calculation 270
  • Appendix 5 - F and G matrices calculation 274
  • 1 Transition matrix calculation 274
  • 2 Discretized input matrix calculation 278
  • References 280
  • Index 284
  • .