Quantum approach to informatics

An essential overview of quantum informationInformation, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred...

Descripción completa

Detalles Bibliográficos
Autor principal: Stenholm, Stig (-)
Otros Autores: Suominen, Kalle-Antti, 1964-
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley-Interscience c2005.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009627031806719
Tabla de Contenidos:
  • QUANTUM APPROACH TO INFORMATICS; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 Background; 1.2 Quantum Information Unit; 1.3 Representation of the Qubit; 1.3.1 Bloch Sphere; 1.3.2 Poincaré Sphere; 1.4 The Appetizer: Secure Communication; 1.5 References; 2 QUANTUM THEORY; 2.1 Quantum Mechanics; 2.1.1 Structure of Quantum Theory; 2.1.2 Quantum Ensembles; 2.2 Nonlocality of Quantum Mechanics; 2.2.1 Nonsignaling by Quantum Observations; 2.2.2 No Cloning of Quantum States; 2.2.3 Teleportation; 2.2.4 Bell Inequalities; 2.2.5 GHZ States and Reality; 2.3 The Process of Measurement
  • 2.3.1 Introducing the Meter2.3.2 Measurement Transformation; 2.3.3 Observation on Nonorthogonal States; 2.3.4 Special Cases; 2.4 Introduction of Irreversibility; 2.4.1 Master Equation; 2.4.2 Unraveling the Master Equation; 2.4.3 Continuous Measurements; 2.4.4 Completely Positive Maps; 2.5 References; 3 QUANTUM COMMUNICATION AND INFORMATION; 3.1 Classical Communication; 3.1.1 Information Theory; 3.1.2 Coding Theory; 3.2 Quantum Communication; 3.2.1 Quantum Information; 3.2.2 Quantum Channel; 3.2.3 Use of Generalized Measurements; 3.2.4 Neumark Extension; 3.3 Distance Between States
  • 3.3.1 Trace Distance3.3.2 Fidelity; 3.3.3 Relative Entropy; 3.4 References; 4 QUANTUM COMPUTING; 4.1 Logic Operations; 4.1.1 Classical Logic Operations; 4.1.2 Quantum Logic Functions; 4.1.3 Simple Quantum Operations; 4.1.4 The Deutsch Problem; 4.2 The Computer; 4.2.1 Classical Universal Computer; 4.2.2 Computational Complexity; 4.2.3 Quantum Computer; 4.2.4 Quantum Computing Circuits; 4.2.5 Universal Quantum Gates; 4.2.6 Quantum Measurement Circuit; 4.2.7 Quantum Fourier Transform; 4.3 Quantum Algorithms; 4.3.1 Public Key Code; 4.3.2 Quantum Factoring Algorithm; 4.3.3 Quantum Algorithms
  • 4.4 Errors in Quantum Computing4.4.1 Types of Errors in Quantum States; 4.4.2 Quantum Error Correction; 4.5 Energetics of Quantum Computations; 4.5.1 Energy Used by a Classical Computer; 4.5.2 Resetting Energy; 4.6 References; 5 PHYSICAL REALIZATION OF QUANTUM INFORMATION PROCESSING; 5.1 General Considerations; 5.2 Requirements for Quantum Computers; 5.3 Logic in Electromagnetic Cavities; 5.3.1 Cavity Quantum Electrodynamics; 5.3.2 Conditional Logic; 5.3.3 Dissipative Processes in Cavity QED; 5.4 Logic with Ions in Traps; 5.4.1 Trapping Cool Ions; 5.4.2 Quantum Logic in an Ion Trap
  • 5.4.3 Computing with Hot Ions5.5 Solid-State Systems; 5.5.1 General Considerations; 5.5.2 Special Examples; 5.6 Macromolecules and Optical Lattices; 5.6.1 Nuclear Spin in Molecules; 5.6.2 Optical Lattices; 5.7 Conclusions; 5.8 References; REFERENCES; INDEX