Analog VLSI circuits for the perception of visual motion

Although it is now possible to integrate many millions of transistors on a single chip, traditional digital circuit technology is now reaching its limits, facing problems of cost and technical efficiency when scaled down to ever-smaller feature sizes. The analysis of biological neural systems, espec...

Descripción completa

Detalles Bibliográficos
Autor principal: Stocker, Alan (-)
Formato: Libro electrónico
Idioma:Inglés
Publicado: Hoboken NJ : John Wiley & Sons 2006.
Edición:1st edition
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009626965006719
Tabla de Contenidos:
  • Analog VLSI Circuits for the Perception of Visual Motion; Contents; Foreword; Preface; 1 Introduction; 1.1 Artificial Autonomous Systems; 1.2 Neural Computation and Analog Integrated Circuits; 2 Visual Motion Perception; 2.1 Image Brightness; 2.2 Correspondence Problem; 2.3 Optical Flow; 2.4 Matching Models; 2.4.1 Explicit matching; 2.4.2 Implicit matching; 2.5 Flow Models; 2.5.1 Global motion; 2.5.2 Local motion; 2.5.3 Perceptual bias; 2.6 Outline for a Visual Motion Perception System; 2.7 Review of a VLSI Implementations; 3 Optimization Networks; 3.1 Associative Memory and Optimization
  • 3.2 Constraint Satisfaction Problems3.3 Winner-takes-all Networks; 3.3.1 Network architecture; 3.3.2 Global convergence and gain; 3.4 Resistive Network; 4 Visual Motion Perception Networks; 4.1 Model for Optical Flow Estimation; 4.1.1 Well-posed optimization problem; 4.1.2 Mechanical equivalent; 4.1.3 Smoothness and sparse data; 4.1.4 Probabilistic formulation; 4.2 Network Architecture; 4.2.1 Non-stationary optimization; 4.2.2 Network conductances; 4.3 Simulation Results for Natural Image Sequences; 4.4 Passive Non-linear Network Conductances; 4.5 Extended Recurrent Network Architectures
  • 4.5.1 Motion segmentation4.5.2 Attention and motion selection; 4.6 Remarks; 5 Analog VLSI Implementation; 5.1 Implementation Substrate; 5.2 Phototransduction; 5.2.1 Logarithmic adaptive photoreceptor; 5.2.2 Robust brightness constancy constraint; 5.3 Extraction of the Spatio-temporal Brightness Gradients; 5.3.1 Temporal derivative circuits; 5.3.2 Spatial sampling; 5.4 Single Optical Flow Unit; 5.4.1 Wide-linear-range multiplier; 5.4.2 Effective bias conductance; 5.4.3 Implementation of the smoothness constraint; 5.5 Layout; 6 Smooth Optical Flow Chip; 6.1 Response Characteristics
  • 6.1.1 Speed tuning6.1.2 Contrast dependence; 6.1.3 Spatial frequency tuning; 6.1.4 Orientation tuning; 6.2 Intersection-of-constraints Solution; 6.3 Flow Field Estimation; 6.4 Device Mismatch; 6.4.1 Gradient offsets; 6.4.2 Variations across the array; 6.5 Processing Speed; 6.6 Applications; 6.6.1 Sensor modules for robotic applications; 6.6.2 Human-machine interface; 7 Extended Network Implementations; 7.1 Motion Segmentation Chip; 7.1.1 Schematics of the motion segmentation pixel; 7.1.2 Experiments and results; 7.2 Motion Selection Chip; 7.2.1 Pixel schematics
  • 7.2.2 Non-linear diffusion length7.2.3 Experiments and results; 8 Comparison to Human Motion Vision; 8.1 Human vs. Chip Perception; 8.1.1 Contrast-dependent speed perception; 8.1.2 Bias on perceived direction of motion; 8.1.3 Perceptual dynamics; 8.2 Computational Architecture; 8.3 Remarks; Appendix; A Variational Calculus; B Simulation Methods; C Transistors and Basic Circuits; D Process Parameters and Chips Specifications; References; Index