Automatic text summarization with maximal frequent sequences

At any time humans need accurate information to solve different problems. For example, how to perform a task, what happens in the news, what the hundreds of tweets say, etc. On the other hand, electronic information has exponentially growth; therefore the problem is how to discern in few minutes whi...

Descripción completa

Detalles Bibliográficos
Autor principal: Nikolaevna Ledeneva, Yulia (-)
Otros Autores: García Hernández, René
Formato: Libro electrónico
Idioma:Inglés
Publicado: Ciudad de México : Ediciones y Gráficos Eón 2013.
Colección:Colección Biblioteca de Investigación Especializada. Área del conocimiento: Humanidades/Ingeniería.
Materias:
Ver en Biblioteca Universitat Ramon Llull:https://discovery.url.edu/permalink/34CSUC_URL/1im36ta/alma991009429580906719
Tabla de Contenidos:
  • Automatic text summarization with maximal frequent sequences
  • Página legal
  • Índice
  • Abstract
  • Resumen
  • Introduction
  • Chapter I
  • I.1 Computational
  • I.2 Text summarization
  • I.3 Extractive text summarization
  • I.4 Abstractive text summarization
  • I.5 Applications of text
  • I.6 Research problem
  • Chapter II
  • II.1 Text pre-processing
  • II.2 Text representation
  • II.3 Graph algorithms
  • II.4 Genetic algorithms
  • II.5 Clustering
  • Chapter III
  • III.1 Definitions
  • III.2 New method using maximal
  • III.3 New method using graph
  • III.5 New method using clustering
  • Chapter IV
  • IV.1 Experimental
  • IV.2 Experimental
  • IV.3 Experimental
  • Conclusions
  • References
  • Appendices.